欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

caffe 学习笔记-模型训练与测试

程序员文章站 2024-03-22 09:07:22
...

以LeNet 手写字体识别为例,首先进入caffe安装目录,并下载手写字体训练数据:

cd $CAFFE_ROOT
sudo ./data/mnist/get_mnist.sh

将图片转换成lmdb文件:

sudo ./examples/mnist/create_mnist.sh

运行后得到 mnist_train_lmdb和mnist_test_lmdb.

/examples/mnist/lenet_solver.prototxt文件定义了训练参数,模型文件net,迭代次数max_iter,学习率base_lr等,solver_mode配置是否使用GPU:

# The train/test net protocol buffer definition
net: "examples/mnist/lenet_train_test.prototxt"
# test_iter specifies how many forward passes the test should carry out.
# In the case of MNIST, we have test batch size 100 and 100 test iterations,
# covering the full 10,000 testing images.
test_iter: 100
# Carry out testing every 500 training iterations.
test_interval: 500
# The base learning rate, momentum and the weight decay of the network.
base_lr: 0.01
momentum: 0.9
weight_decay: 0.0005
# The learning rate policy
lr_policy: "inv"
gamma: 0.0001
power: 0.75
# Display every 100 iterations
display: 100
# The maximum number of iterations
max_iter: 10000
# snapshot intermediate results
snapshot: 5000
snapshot_prefix: "examples/mnist/lenet"
# solver mode: CPU or GPU
solver_mode: GPU

训练:

sudo ./examples/mnist/train_lenet.sh

也可以直接执行训练命令:

./build/tools/caffe train –solver=examples/mnist/lenet_solver.prototxt

caffe输入参数train表示训练.

训练结果:

caffe 学习笔记-模型训练与测试

学习率更新,可以通过lr_policy: “multistep”实现,例如要实现在step值分别为 5000,7000,8000,9000,9500时,按照decay=0.9更新学习率,可以修改solver.ptototxt文件如下:


# The train/test net protocol buffer definition
net: "examples/mnist/lenet_train_test.prototxt"
# test_iter specifies how many forward passes the test should carry out.
# In the case of MNIST, we have test batch size 100 and 100 test iterations,
# covering the full 10,000 testing images.
test_iter: 100
# Carry out testing every 500 training iterations.
test_interval: 500
# The base learning rate, momentum and the weight decay of the network.
base_lr: 0.01
momentum: 0.9
weight_decay: 0.0005
# The learning rate policy
lr_policy: "multistep"
gamma: 0.9
stepvalue: 5000
stepvalue: 7000
stepvalue: 8000
stepvalue: 9000
stepvalue: 9500
# Display every 100 iterations
display: 100
# The maximum number of iterations
max_iter: 10000
# snapshot intermediate results
snapshot: 5000
snapshot_prefix: "examples/mnist/lenet_multistep"
# solver mode: CPU or GPU
solver_mode: GPU