caffe 学习笔记-模型训练与测试
程序员文章站
2024-03-22 09:07:22
...
以LeNet 手写字体识别为例,首先进入caffe安装目录,并下载手写字体训练数据:
cd $CAFFE_ROOT
sudo ./data/mnist/get_mnist.sh
将图片转换成lmdb文件:
sudo ./examples/mnist/create_mnist.sh
运行后得到 mnist_train_lmdb和mnist_test_lmdb.
/examples/mnist/lenet_solver.prototxt文件定义了训练参数,模型文件net,迭代次数max_iter,学习率base_lr等,solver_mode配置是否使用GPU:
# The train/test net protocol buffer definition
net: "examples/mnist/lenet_train_test.prototxt"
# test_iter specifies how many forward passes the test should carry out.
# In the case of MNIST, we have test batch size 100 and 100 test iterations,
# covering the full 10,000 testing images.
test_iter: 100
# Carry out testing every 500 training iterations.
test_interval: 500
# The base learning rate, momentum and the weight decay of the network.
base_lr: 0.01
momentum: 0.9
weight_decay: 0.0005
# The learning rate policy
lr_policy: "inv"
gamma: 0.0001
power: 0.75
# Display every 100 iterations
display: 100
# The maximum number of iterations
max_iter: 10000
# snapshot intermediate results
snapshot: 5000
snapshot_prefix: "examples/mnist/lenet"
# solver mode: CPU or GPU
solver_mode: GPU
训练:
sudo ./examples/mnist/train_lenet.sh
也可以直接执行训练命令:
./build/tools/caffe train –solver=examples/mnist/lenet_solver.prototxt
caffe输入参数train表示训练.
训练结果:
学习率更新,可以通过lr_policy: “multistep”实现,例如要实现在step值分别为 5000,7000,8000,9000,9500时,按照decay=0.9更新学习率,可以修改solver.ptototxt文件如下:
# The train/test net protocol buffer definition
net: "examples/mnist/lenet_train_test.prototxt"
# test_iter specifies how many forward passes the test should carry out.
# In the case of MNIST, we have test batch size 100 and 100 test iterations,
# covering the full 10,000 testing images.
test_iter: 100
# Carry out testing every 500 training iterations.
test_interval: 500
# The base learning rate, momentum and the weight decay of the network.
base_lr: 0.01
momentum: 0.9
weight_decay: 0.0005
# The learning rate policy
lr_policy: "multistep"
gamma: 0.9
stepvalue: 5000
stepvalue: 7000
stepvalue: 8000
stepvalue: 9000
stepvalue: 9500
# Display every 100 iterations
display: 100
# The maximum number of iterations
max_iter: 10000
# snapshot intermediate results
snapshot: 5000
snapshot_prefix: "examples/mnist/lenet_multistep"
# solver mode: CPU or GPU
solver_mode: GPU
推荐阅读
-
caffe 学习笔记-模型训练与测试
-
零基础入门CV赛事-TASK4模型训练与验证学习笔记
-
测试一个训练好的caffe模型
-
深度学习PyTorch,TensorFlow中GPU利用率较低,CPU利用率很低,且模型训练速度很慢的问题总结与分析
-
tensorflow深度学习实战笔记(一):使用tensorflow slim自带的模型训练自己的数据
-
机器学习笔记(6)-逻辑回归与最大熵模型
-
tensorflow学习笔记之简单的神经网络训练和测试
-
hibernate框架学习笔记1:搭建与测试
-
MySQL数据库Inception工具学习与测试 笔记
-
Unity3D学习笔记(0) 离散仿真系统与 Unity 事件模型