欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

tensorflow学习笔记之简单的神经网络训练和测试

程序员文章站 2023-01-01 10:34:01
本文实例为大家分享了用简单的神经网络来训练和测试的具体代码,供大家参考,具体内容如下 刚开始学习tf时,我们从简单的地方开始。卷积神经网络(cnn)是由简单的神经网络(n...

本文实例为大家分享了用简单的神经网络来训练和测试的具体代码,供大家参考,具体内容如下

刚开始学习tf时,我们从简单的地方开始。卷积神经网络(cnn)是由简单的神经网络(nn)发展而来的,因此,我们的第一个例子,就从神经网络开始。

神经网络没有卷积功能,只有简单的三层:输入层,隐藏层和输出层。

数据从输入层输入,在隐藏层进行加权变换,最后在输出层进行输出。输出的时候,我们可以使用softmax回归,输出属于每个类别的概率值。借用极客学院的图表示如下:

tensorflow学习笔记之简单的神经网络训练和测试

其中,x1,x2,x3为输入数据,经过运算后,得到三个数据属于某个类别的概率值y1,y2,y3. 用简单的公式表示如下:

tensorflow学习笔记之简单的神经网络训练和测试

在训练过程中,我们将真实的结果和预测的结果相比(交叉熵比较法),会得到一个残差。公式如下:

tensorflow学习笔记之简单的神经网络训练和测试

y是我们预测的概率值,y'是实际的值。这个残差越小越好,我们可以使用梯度下降法,不停地改变w和b的值,使得残差逐渐变小,最后收敛到最小值。这样训练就完成了,我们就得到了一个模型(w和b的最优化值)。

完整代码如下:

import tensorflow as tf
import tensorflow.examples.tutorials.mnist.input_data as input_data
mnist = input_data.read_data_sets("mnist_data/", one_hot=true)
x = tf.placeholder(tf.float32, [none, 784])
y_actual = tf.placeholder(tf.float32, shape=[none, 10])
w = tf.variable(tf.zeros([784,10]))    #初始化权值w
b = tf.variable(tf.zeros([10]))      #初始化偏置项b
y_predict = tf.nn.softmax(tf.matmul(x,w) + b)   #加权变换并进行softmax回归,得到预测概率
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_actual*tf.log(y_predict),reduction_indies=1))  #求交叉熵
train_step = tf.train.gradientdescentoptimizer(0.01).minimize(cross_entropy)  #用梯度下降法使得残差最小

correct_prediction = tf.equal(tf.argmax(y_predict,1), tf.argmax(y_actual,1))  #在测试阶段,测试准确度计算
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))        #多个批次的准确度均值

init = tf.initialize_all_variables()
with tf.session() as sess:
  sess.run(init)
  for i in range(1000):        #训练阶段,迭代1000次
    batch_xs, batch_ys = mnist.train.next_batch(100)      #按批次训练,每批100行数据
    sess.run(train_step, feed_dict={x: batch_xs, y_actual: batch_ys})  #执行训练
    if(i%100==0):         #每训练100次,测试一次
      print "accuracy:",sess.run(accuracy, feed_dict={x: mnist.test.images, y_actual: mnist.test.labels})

每训练100次,测试一次,随着训练次数的增加,测试精度也在增加。训练结束后,1w行数据测试的平均精度为91%左右,不是太高,肯定没有cnn高。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。