CycleGAN的原理与实验详解
CycleGAN是在今年三月底放在arxiv(地址:[1703.10593] Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks)的一篇文章,同一时期还有两篇非常类似的DualGAN和DiscoGAN,简单来说,它们的功能就是:自动将某一类图片转换成另外一类图片。
作者在论文中也举了一些例子,比如将普通的马和斑马进行互相转换,将苹果和橘子进行互相转换:
把照片转换成油画风格:
将油画中的场景还原成现实中的照片:由于CycleGAN这个框架具有较强的通用性,因此一经发表就吸引了大量注意,很快,脑洞大开的网友想出了各种各样神奇的应用。比如将猫变成狗:
让图片中的人露出笑容:国外网友Jack Clark还搜集了巴比伦、耶路撒冷以及伦敦的古代地图,利用CycleGAN将它们还原成了真实卫星图像:
还有人使用CycleGAN将人脸转换成娃娃:
将男人变成女人:
把你自己变成一个“肌肉文身猛男”也是可以的:
如果说这些应用多少可以理解,那么下面的应用就有点“匪夷所思”了:你可以想象将人和拉面做转换吗?日本网友加藤卓哉(Takuya Kato)就训练了这样一个模型,它可以从拉面中生成人像,此外将人脸变成拉面的图片。鉴于生成的结果比较鬼畜,如果有兴趣的可以点击这个链接观看生成结果。
此外,知乎上的
还用CycleGAN训练了可以脱掉女优衣服的模型(可以参考提高驾驶技术:用GAN去除(爱情)动作片中的马赛克和衣服),其脑洞之大,实在是让人惊叹了一番。今天这篇文章主要分成三个部分:
- CycleGAN的原理解析
- CycleGAN与原始的GAN、DCGAN、pix2pix模型的对比
- 如何在TensorFlow中用CycleGAN训练模型
CycleGAN的原理
我们之前已经说过,CycleGAN的原理可以概述为:将一类图片转换成另一类图片。也就是说,现在有两个样本空间,X和Y,我们希望把X空间中的样本转换成Y空间中的样本。
因此,实际的目标就是学习从X到Y的映射。我们设这个映射为F。它就对应着GAN中的生成器,F可以将X中的图片x转换为Y中的图片F(x)。对于生成的图片,我们还需要GAN中的判别器来判别它是否为真实图片,由此构成对抗生成网络。设这个判别器为 。这样的话,根据这里的生成器和判别器,我们就可以构造一个GAN损失,表达式为:
这个损失实际上和原始的GAN损失是一模一样的,如果这一步不是很理解的可以参考我之前的一篇专栏:GAN学习指南:从原理入门到制作生成Demo。
但单纯的使用这一个损失是无法进行训练的。原因在于,映射F完全可以将所有x都映射为Y空间中的同一张图片,使损失无效化。对此,作者又提出了所谓的“循环一致性损失”(cycle consistency loss)。
我们再假设一个映射G,它可以将Y空间中的图片y转换为X中的图片G(y)。CycleGAN同时学习F和G两个映射,并要求 ,以及 。也就是说,将X的图片转换到Y空间后,应该还可以转换回来。这样就杜绝模型把所有X的图片都转换为Y空间中的同一张图片了。根据 和 ,循环一致性损失就定义为:
同时,我们为G也引入一个判别器 ,由此可以同样定义一个GAN的损失 ,最终的损失就由三部分组成:
CycleGAN与DCGAN的对比
为了进一步搞清楚CycleGAN的原理,我们可以拿它和其他几个GAN模型,如DCGAN、pix2pix模型进行对比。
先来看下DCGAN,它的整体框架和最原始的那篇GAN是一模一样的,在这个框架下,输入是一个噪声z,输出是一张图片(如下图),因此,我们实际只能随机生成图片,没有办法控制输出图片的样子,更不用说像CycleGAN一样做图片变换了。
CycleGAN与pix2pix模型的对比
pix2pix也可以做图像变换,它和CycleGAN的区别在于,pix2pix模型必须要求成对数据(paired data),而CycleGAN利用非成对数据也能进行训练(unpaired data)。
比如,我们希望训练一个将白天的照片转换为夜晚的模型。如果使用pix2pix模型,那么我们必须在搜集大量地点在白天和夜晚的两张对应图片,而使用CycleGAN只需同时搜集白天的图片和夜晚的图片,不必满足对应关系。因此CycleGAN的用途要比pix2pix更广泛,利用CycleGAN就可以做出更多有趣的应用。
在TensorFlow中实验CycleGAN
最后来讲一讲如何在TensorFlow中实验CycleGAN,打开全球最大的同性交友网站Github,我们可以发现CycleGAN在TensorFlow中已经有很多*了,我使用的代码是:vanhuyz/CycleGAN-TensorFlow。
利用这个代码,我训练了一个从男性和女性图片互换的模型,比如将男人转换成女人(左侧为原图,右侧为模型自动生成的图片):
还可以将女性转换成男性:
为了训练这么一个模型,我们需要分别准备好男性的图片和女性的图片。在实践中,我使用了CelebA数据集,分别取出其中男性和女性的图片并统一缩放到256x256的大小,然后存入两个文件夹中:
如果你对这个实验有兴趣,可以直接在地址https://pan.baidu.com/s/1i5qY3yt下载到我使用的数据集。当然,也可以使用自己的数据,只需要将它们存为jpg格式并统一缩放到256x256的大小就可以了。接下来的步骤为:
1. 下载项目代码
git clone https://github.com/vanhuyz/CycleGAN-TensorFlow.git
2. 将图片转换成tfrecords格式
这个项目中提供了一个build_data脚本,用于将图片转换成tfrecords形式。假设我们的图片存放在~/datasets/man2woman/a_resized/和 ~/datasets/man2woman/b_resized目录下,对应的命令就是:
python build_data.py \
--X_input_dir ~/datasets/man2woman/a_resized/ \
--Y_input_dir ~/datasets/man2woman/b_resized/ \
--X_output_file ~/datasets/man2woman/man.tfrecords \
--Y_output_file ~/datasets/man2woman/woman.tfrecords
3. 训练
训练的命令为:
python train.py \
--X ~/datasets/man2woman/man.tfrecords \
--Y ~/datasets/man2woman/woman.tfrecords \
--image_size 256
训练的过程比较漫长,此时可以打开TensorBoard来观察训练情况(运行这个命令时需要将“20170715-1622”改成机器中对应的文件夹,下同):
tensorboard --logdir checkpoints/20170715-1622
4. 导出模型并执行单张图片
导出模型的方法为:
python export_graph.py \
--checkpoint_dir checkpoints/20170715-1622 \
--XtoY_model man2woman.pb \
--YtoX_model woman2man.pb \
--image_size 256
对单张图片进行转换(将data/test.jpg替换为对应的输入图片地址):
python inference.py \
--model pretrained/man2woman.pb \
--input data/test.jpg \
--output data/output.jpg \
--image_size 256
总结
因为CycleGAN只需要两类图片就可以训练出一个模型,所以它的应用十分广泛,个人感觉是近期最好玩的一个深度学习模型。这篇文章介绍了CycleGAN的一些有趣的应用、Cycle的原理以及和其他模型的对比,最后加了一个TensorFlow中的CycleGAN小实验,希望大家喜欢~
原文地址:https://zhuanlan.zhihu.com/p/28342644
推荐阅读
-
CycleGAN的原理与实验详解
-
深入学习2———url bypass的基本原理与过滤实验
-
Django中的cookie与session详解和理解
-
深度学习花书 笔记3 - 矩阵对角化、奇异值分解(SVD)、极大似然估计、误差的高斯分布与最小二乘估计的等价性、PCA原理与推导
-
基于hadoop0.202版本的namenode与secondarynamenode分离实验 博客分类: hadoop
-
java 实现https请求的基本原理与介绍 博客分类: http协议
-
PHP的伪随机数与真随机数详解
-
LRU缓存机制的原理与实现
-
协方差矩阵数学原理,numpy计算协方差矩阵(np.cov)函数详解与源码剖析
-
实验四 类与对象的方法的权限控制