欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python实现车牌识别系统

程序员文章站 2022-03-20 11:01:14
车牌识别系统算法参考:http://www.zengqiang.club/blog/34GUI参考:https://blog.csdn.net/wzh191920/article/details/79589506基于opencv的模板识别来实现的车牌识别功能。用pycharm写的。车牌识别的步骤:定位车牌,矫正车牌,识别颜色,分割字符,识别字符。算法:定位车牌通过对输出图片进行一系列的处理后,筛选出矩形区域 if type(car_pic) == type(""):...

车牌识别系统

算法参考:http://www.zengqiang.club/blog/34
GUI参考:https://blog.csdn.net/wzh191920/article/details/79589506

基于opencv的模板识别来实现的车牌识别功能。用pycharm写的。
车牌识别的步骤:定位车牌,矫正车牌,识别颜色,分割字符,识别字符。

算法:

定位车牌

通过对输出图片进行一系列的处理后,筛选出矩形区域
        if type(car_pic) == type(""):
            img = imreadex(car_pic)
        else:
            img = car_pic
        pic_hight, pic_width = img.shape[:2]

        if pic_width > MAX_WIDTH:
            resize_rate = MAX_WIDTH / pic_width
            img = cv2.resize(img, (MAX_WIDTH, int(pic_hight * resize_rate)), interpolation=cv2.INTER_AREA)

        blur = self.cfg["blur"]
        # 高斯去噪
        if blur > 0:
            img = cv2.GaussianBlur(img, (blur, blur), 0)  # 图片分辨率调整
        oldimg = img
        gray_image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)  #灰度处理
        Sobel_x = cv2.Sobel(gray_image, cv2.CV_16S, 1, 0)   #sobel算子边缘检测
        absX = cv2.convertScaleAbs(Sobel_x)   #转回uint8
        image = absX
        ret, image = cv2.threshold(image, 0, 255, cv2.THRESH_OTSU)  #自适应阈值处理
        kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (14, 5))  #闭运算,白色部分练成整体
        image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernelX, iterations=1)
        kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (20, 1))  #去除小白点
        kernelY = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 19))
        image = cv2.dilate(image, kernelX)  #膨胀
        image = cv2.erode(image, kernelX)   #腐蚀
        image = cv2.erode(image, kernelY)   #腐蚀
        image = cv2.dilate(image, kernelY)  #膨胀
        image = cv2.medianBlur(image, 15)  #中值滤波去除噪点
        contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)#轮廓检测
        # 一一排除不是车牌的矩形区域
        car_contours = []  #筛选车牌位置的轮廓
        for cnt in contours:
            rect = cv2.minAreaRect(cnt)
            area_width, area_height = rect[1]
            if area_width < area_height:
                area_width, area_height = area_height, area_width
            wh_ratio = area_width / area_height
            # print(wh_ratio)
            # 要求矩形区域长宽比在25.5之间,25.5是车牌的长宽比,其余的矩形排除
            if wh_ratio > 2 and wh_ratio < 5.5:
                car_contours.append(rect)
                box = cv2.boxPoints(rect)
                box = np.int0(box)
        print("精确定位")

矫正矩形

card_imgs = []
        # 矩形区域可能是倾斜的矩形,需要矫正,以便使用颜色定位
        for rect in car_contours:
            if rect[2] > -1 and rect[2] < 1:  # 创造角度,使得左、高、右、低拿到正确的值
                angle = 1
            else:
                angle = rect[2]
            rect = (rect[0], (rect[1][0] + 5, rect[1][1] + 5), angle)  # 扩大范围,避免车牌边缘被排除

            box = cv2.boxPoints(rect)
            heigth_point = right_point = [0, 0]
            left_point = low_point = [pic_width, pic_hight]
            for point in box:
                if left_point[0] > point[0]:
                    left_point = point
                if low_point[1] > point[1]:
                    low_point = point
                if heigth_point[1] < point[1]:
                    heigth_point = point
                if right_point[0] < point[0]:
                    right_point = point

            if left_point[1] <= right_point[1]:  # 正角度
                new_right_point = [right_point[0], heigth_point[1]]
                pts2 = np.float32([left_point, heigth_point, new_right_point])  # 字符只是高度需要改变
                pts1 = np.float32([left_point, heigth_point, right_point])
                M = cv2.getAffineTransform(pts1, pts2)
                dst = cv2.warpAffine(oldimg, M, (pic_width, pic_hight))
                point_limit(new_right_point)
                point_limit(heigth_point)
                point_limit(left_point)
                card_img = dst[int(left_point[1]):int(heigth_point[1]), int(left_point[0]):int(new_right_point[0])]
                card_imgs.append(card_img)
            elif left_point[1] > right_point[1]:  # 负角度

                new_left_point = [left_point[0], heigth_point[1]]
                pts2 = np.float32([new_left_point, heigth_point, right_point])  # 字符只是高度需要改变
                pts1 = np.float32([left_point, heigth_point, right_point])
                M = cv2.getAffineTransform(pts1, pts2)
                dst = cv2.warpAffine(oldimg, M, (pic_width, pic_hight))
                point_limit(right_point)
                point_limit(heigth_point)
                point_limit(new_left_point)
                card_img = dst[int(right_point[1]):int(heigth_point[1]), int(new_left_point[0]):int(right_point[0])]
                card_imgs.append(card_img)

颜色定位

 colors = []
        for card_index, card_img in enumerate(card_imgs):
                    green = yello = blue = black = white = 0
                    card_img_hsv = cv2.cvtColor(card_img, cv2.COLOR_BGR2HSV)
                    # 有转换失败的可能,原因来自于上面矫正矩形出错
                    if card_img_hsv is None:
                        continue
                    row_num, col_num = card_img_hsv.shape[:2]
                    card_img_count = row_num * col_num

                    for i in range(row_num):
                        for j in range(col_num):
                            H = card_img_hsv.item(i, j, 0)
                            S = card_img_hsv.item(i, j, 1)
                            V = card_img_hsv.item(i, j, 2)
                            if 11 < H <= 34 and S > 34:  # 图片分辨率调整
                                yello += 1
                            elif 35 < H <= 99 and S > 34:  # 图片分辨率调整
                                green += 1
                            elif 99 < H <= 124 and S > 34:  # 图片分辨率调整
                                blue += 1

                            if 0 < H < 180 and 0 < S < 255 and 0 < V < 46:
                                black += 1
                            elif 0 < H < 180 and 0 < S < 43 and 221 < V < 225:
                                white += 1
                    color = "no"

                    limit1 = limit2 = 0
                    if yello * 2 >= card_img_count:
                        color = "yello"
                        limit1 = 11
                        limit2 = 34  # 有的图片有色偏偏绿
                    elif green * 2 >= card_img_count:
                        color = "green"
                        limit1 = 35
                        limit2 = 99
                    elif blue * 2 >= card_img_count:
                        color = "blue"
                        limit1 = 100
                        limit2 = 124  # 有的图片有色偏偏紫
                    elif black + white >= card_img_count * 0.7:  # TODO
                        color = "bw"
                    print(color)
                    colors.append(color)
                    print(blue, green, yello, black, white, card_img_count)

                    if limit1 == 0:
                        continue

识别车牌字符

predict_result = []
                    word_images = []
                    roi = None
                    card_color = None
                    for i, color in enumerate(colors):
                        if color in ("blue", "yello", "green"):
                            card_img = card_imgs[i]  # 定位的车牌
                            gray_img = cv2.cvtColor(card_img, cv2.COLOR_BGR2GRAY)
                            # 黄、绿车牌字符比背景暗、与蓝车牌刚好相反,所以黄、绿车牌需要反向
                            if color == "green" or color == "yello":
                                gray_img = cv2.bitwise_not(gray_img)
                            ret, gray_img = cv2.threshold(gray_img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
                            # 查找水平直方图波峰
                            x_histogram = np.sum(gray_img, axis=1)
                            x_min = np.min(x_histogram)
                            x_average = np.sum(x_histogram) / x_histogram.shape[0]
                            x_threshold = (x_min + x_average) / 2
                            wave_peaks = find_waves(x_threshold, x_histogram)
                            if len(wave_peaks) == 0:
                                print("peak less 0:")
                                continue
                            # 认为水平方向,最大的波峰为车牌区域
                            wave = max(wave_peaks, key=lambda x: x[1] - x[0])
                            gray_img = gray_img[wave[0]:wave[1]]
                            # 查找垂直直方图波峰
                            row_num, col_num = gray_img.shape[:2]
                            # 去掉车牌上下边缘1个像素,避免白边影响阈值判断
                            gray_img = gray_img[1:row_num - 1]
                            y_histogram = np.sum(gray_img, axis=0)
                            y_min = np.min(y_histogram)
                            y_average = np.sum(y_histogram) / y_histogram.shape[0]
                            y_threshold = (y_min + y_average) / 5  # U0要求阈值偏小,否则U0会被分成两半

                            wave_peaks = find_waves(y_threshold, y_histogram)

                            # for wave in wave_peaks:
                            #	cv2.line(card_img, pt1=(wave[0], 5), pt2=(wave[1], 5), color=(0, 0, 255), thickness=2)
                            # 车牌字符数应大于6
                            if len(wave_peaks) <= 6:
                                print("peak less 1:", len(wave_peaks))
                                continue

                            wave = max(wave_peaks, key=lambda x: x[1] - x[0])
                            max_wave_dis = wave[1] - wave[0]
                            # 判断是否是左侧车牌边缘
                            if wave_peaks[0][1] - wave_peaks[0][0] < max_wave_dis / 3 and wave_peaks[0][0] == 0:
                                wave_peaks.pop(0)

                            # 组合分离汉字
                            cur_dis = 0
                            for i, wave in enumerate(wave_peaks):
                                if wave[1] - wave[0] + cur_dis > max_wave_dis * 0.6:
                                    break
                                else:
                                    cur_dis += wave[1] - wave[0]
                            if i > 0:
                                wave = (wave_peaks[0][0], wave_peaks[i][1])
                                wave_peaks = wave_peaks[i + 1:]
                                wave_peaks.insert(0, wave)

                            # 去除车牌上的分隔点
                            point = wave_peaks[2]
                            if point[1] - point[0] < max_wave_dis / 3:
                                point_img = gray_img[:, point[0]:point[1]]
                                if np.mean(point_img) < 255 / 5:
                                    wave_peaks.pop(2)

                            if len(wave_peaks) <= 6:
                                print("peak less 2:", len(wave_peaks))
                                continue
                            part_cards = seperate_card(gray_img, wave_peaks)
                            for i, part_card in enumerate(part_cards):
                                # 可能是固定车牌的铆钉
                                if np.mean(part_card) < 255 / 5:
                                    print("a point")
                                    continue
                                part_card_old = part_card
                                w = abs(part_card.shape[1] - SZ) // 2

                                part_card = cv2.copyMakeBorder(part_card, 0, 0, w, w, cv2.BORDER_CONSTANT,
                                                               value=[0, 0, 0])
                                part_card = cv2.resize(part_card, (SZ, SZ), interpolation=cv2.INTER_AREA)
                                word_images.append(part_card)
                            word_images_ = word_images.copy()
                            predict_result = template_matching(word_images_)
                            roi = card_img
                            card_color = color
                            print(predict_result)
                            break

GUI界面:

python实现车牌识别系统
python实现车牌识别系统

总结

这是一个比较简单粗糙的车牌识别系统,由于采用的是模板识别,模板数量越大,识别速度越慢,差不多识别一次要20s,并且受图片的质量影响,识别准确度不高甚至会出现无法识别的情况。但应付课程设计的话应该是足够了。要想做的更好的话建议识别字符采用opencv的SVM或者用tesseract.
算法和界面都参考了别人的博客,自己做了些整合和改动。
全部代码和模板放在github:https://github.com/panboshui/-

本文地址:https://blog.csdn.net/weixin_43911559/article/details/107440770