欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

浅谈 KMP 算法

程序员文章站 2024-03-17 17:27:58
...

最近在复习数据结构,学到了 KMP 算法这一章,似乎又迷糊了,记得第一次学习这个算法时,老师在课堂上讲得唾沫横飞,十分有激情,而我们在下面听得一脸懵比,啥?这是个啥算法?啥玩意?再去看看书,完全听不懂呀?总之,觉得十分懵比,课后去看了一些视频和博客,才慢慢有一点理解,学习不是一蹴而就的,需要脚踏实地的努力。过了三年,重新温习这个算法,似乎依旧不是很明白,理解得不够透彻,重新拾起课本和视频,认真学习这个算法。

1.KMP 算法简介

KMP 算法是由三位老前辈(D.E.Knuth,J.H.Morris 和 V.R.Pratt )的研究结果,该算法巧妙之处在于避免重复遍历的情况,全称叫做克努特-莫里斯-普拉特算法,简称 KMP 算法,D.E.Knuth,编写了《计算机程序设计艺术》写完了第四卷,这部著作被誉为计算机领域中的“相对论”。

2.子串 next 数组的计算

KMP 算法关键点是先求出 next[] 数组,这个 next 数组只与模式匹配串有关,例如以 “abababca” 这个子串计算一下它的 next 数组

下标为 index = 0 开始 ,

index = 0 ,“a” 的前缀和后缀都为空集,value = 0;

index = 1,“ab” 的前缀和后缀分别为 “a” 和 “b”,不相等,value = 0;

index = 2, “aba” 的前缀是 “a”、 “ab”,后缀是 “ba”、“a”,有相同交集 “a”,长度为 1, value = 1;

index = 3, “abab” 的前缀是 “a”、“ab”、“aba”,后缀是 “bab”、“ab”、“b”,有最长相同交集 “ab”, 长度为 2,value = 2;

index = 4,“ababa” 的前缀是 “a”、“ab”、“aba”、“abab”,后缀是 “baba”、“aba”、“ba”、“a”,有最大相同交集 “aba”,长度为 3, value = 3;

index = 5,“ababab” 的前缀是 “a”、“ab”、“aba”、“abab”、“ababa”,后缀是 “babab”、“abab”、“bab”、“ab”、“b”,有最长相同交集 “abab”,长度为 4, value = 4;

index = 6,“abababc” 的前缀是 “a”、“ab”、“aba”、“abab”、“ababa”、“ababab”,后缀是 “bababc”、“ababc”、“babc”、“abc”、“bc”、“c”,没有相同交集,value = 0;

index = 7,“abababca” 的前缀是 “a”、“ab”、“aba”、“abab”、“ababa”、“abababc”,后缀是 “bababca”、“ababca”、“babca”、“abca”、“bca”、“ca”、“a”,有相同交集 “a”,长度为1,value = 1;

最后结果如下:

char:  | a | b | a | b | a | b | c | a |

index: | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |

value: | 0 | 0 | 1 | 2 | 3 | 4 | 0 | 1 |

3、如何使用 next[] 数组

得到子串的 next 数组以后,在目标串中匹配使用 next 数组,通过使用 next 数组避免重复的匹配已经匹配过的元素,如果找到长度为 partial_match_length 的部分匹配,并且表 next [partial_match_length]> 1,我们可以提前跳过 partial_match_length - next[partial_match_length-1] 个字符

总结移动位数 = 已匹配的字符数 - 对应的部分匹配值

char:  | a | b | a | b | a | b | c | a |

index: | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |

value: | 0 | 0 | 1 | 2 | 3 | 4 | 0 | 1 |

以 “bacbababaabcbab” 为例说明它的匹配过程,第一次匹配, 调到 index = 1 位置,如下

bacbababaabcbab
 |
 abababca

不难看出, 部分匹配的长度为 partial_match_length = 1, 但是在 next [ partial_match_length - 1] = 0,也就是 next[0] = 0,这个元素,所以我们不需要跳过任何元素,接下来 cb 和 a 都不匹配直接向右匹配,到了下一个 a 匹配的地方

     bacbababaabcbab
     	 |||||
	     abababca

来到这个地方,你会发现此时部分匹配的长度为 5 , partial_match_length = 5, next[partial_match_length - 1] = next[4],查 next 数组,next[4] = 3,这就意味着在接下来的匹配中我们要跳过 partial_match_length - next[partial_match_length-1] ,即 5 - next[4] = 5 - 3 = 2,要跳过 2 个字符,所以接下来的匹配应该变成了如下所示:

    bacbababaabcbab
    	xx|||
     	  abababca

xx 表示跳过了,部分匹配长度为 3, partial_match_length = 3,next[partial_match_length - 1] = next[2] = 1,接下来匹配中要跳过

partial_match_length - next[partial_match_length - 1], 即 3 - 1 = 2, 跳过 2 个字符后的匹配情况如下:

bacbababaabcbab
	  xx| 
		abababca

得到部分匹配长度为 1 , partial_match_length = 1, next[partial_match_length - 1] = 0,接下来匹配不用跳过字符,向右匹配,匹配串比剩余的主串要长,所以没有找到匹配的字符串。

4、KMP 算法代码实现,使用 C 语言实现

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
void get_next(char T[],int next[])//next数组
{
    int i,j;
    i=0;//前
    j=1;//后
    next[1]=0;
    while(j<T[0]) {
        if(i==0 || T[i]==T[j])
        {
            i++;
            j++;
            next[j]=i;
            /*if(T[i]!=T[j])
            {
                next[j]=i;
            }
            else 
            {
 
                next[j]=next[i];
            }*/
        }
        else 
        {
            i=next[i];
        }
    }
}
int Index_KMP(char S[],char T[])
{
    int next[1000];
    int i=1;
    int j=1;
    get_next(T,next);//获得next数组
    /*
    for(i=1;i<=T[0];i++)
    {
            printf("%d ",next[i]);
    }
    */
    while(i<=S[0] && j<=T[0])
    {
        if(j==0||S[i]==T[j])
        {
           i++;
           j++;
        }
        else 
        {
            j=next[j];
        }
    }
    if(j>T[0])
        return i-T[0];
    return 0;
 
}
int main (){
    char T[1000],S[1000];
    int i,k;
    while(scanf("%s %s",S,T)!=EOF)
    {
        k=strlen(T);
        for(i=strlen(T);i>0;i--)//向后移动
        {
            T[i]=T[i-1];    
        }
        T[0]=k;
        k=strlen(S);
        for(i=strlen(S);i>0;i--)//向后移动
        {
            S[i]=S[i-1];    
        }
        S[0]=k;
        printf("%d\n",Index_KMP(S,T));
    }
    return 0;
 
}
 

运行结果如下:

浅谈 KMP 算法

4 为第一个出现匹配字符串的数字下标从 1 开始

5、个人总结

经过这次对于 KMP 算法的练习,使我重新练习了一遍,关于 KMP 中算法实现的某些步骤依旧不是很清楚,有些地方想得还不是特别明白,也许这就是差距。今天出现了一些代码的 Bug,为了解决 Bug 查了一些网站的资料,重新温习了 C语言的使用,今天过得很充实。

更多有趣、好玩、实用的内容,请关注我的微信公众号:

浅谈 KMP 算法

参考资料:

http://jakeboxer.com/blog/2009/12/13/the-knuth-morris-pratt-algorithm-in-my-own-words/

http://www.ruanyifeng.com/blog/2013/05/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm.html

https://liam.page/2016/12/20/KMP-Algorithm/

https://blog.dotcpp.com/a/8986

相关标签: kmp 算法