Time Limit: 6000MS | Memory Limit: 65536K | |
Total Submissions: 5489 | Accepted: 1511 |
Description
Given a N × N matrix A, whose element in the i-th row and j-th column Aij is an number that equals i2 + 100000 × i + j2 - 100000 × j + i × j, you are to find the M-th smallest element in the matrix.
Input
The first line of input is the number of test case.
For each test case there is only one line contains two integers, N(1 ≤ N ≤ 50,000) and M(1 ≤ M ≤ N × N). There is a blank line before each test case.
Output
For each test case output the answer on a single line.
Sample Input
12 1 1 2 1 2 2 2 3 2 4 3 1 3 2 3 8 3 9 5 1 5 25 5 10
Sample Output
3 -99993 3 12 100007 -199987 -99993 100019 200013 -399969 400031 -99939
给了一个N*N的矩阵,每个位置上的数由该位置的下标i,j决定。然后问这个矩阵中第m小的数。
通过这道题好好总结了一下二分,总算是深刻理解了一下。
第一个二分枚举答案,第二个二分,通过公式可知,函数跟j不是单调的关系,但跟i是单调的关系,所以每次枚举j,然后二分i的值。
代码:
#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <string>
#include <cstring>
#pragma warning(disable:4996)
using namespace std;
#define maxn 1e12
typedef long long ll;
ll m, n;
ll le, ri, mid;
ll cal(ll i, ll j)
{
return i*i + 100000 * i + j*j - 100000 * j + i*j;
}
ll check(ll x)
{
ll i, le, ri, mid, cnt;
ll temp;
cnt = 0;
for (i = 1; i <= n; i++)
{
le = 1;//mid不能取到0,所以这里的le取1
ri = n + 1;//因为mid可能要取到n,所以这里的ri要取到比n大的数
mid = le + (ri - le) / 2;
while (le < ri)
{
temp = cal(mid, i);
if (cal(mid, i) < x)
{
le = mid + 1;
}
else
{
ri = mid ;
}
mid = le + (ri - le) / 2;
}
cnt += (mid - 1);//经过计算,这里始终是多计算了一个1,所以要在这里把它扣掉
}
return cnt;
}
int main()
{
//freopen("i.txt", "r", stdin);
//freopen("o.txt", "w", stdout);
int test;
scanf("%d", &test);
while (test--)
{
scanf("%lld%lld", &n, &m);
le = -maxn;
ri = maxn;
mid = le + (ri - le) / 2;
while (le < ri)
{
if (check(mid) < m)//检查小于 mid 的个数
{
le = mid + 1;
}
else
{
ri = mid;
}
mid = le + (ri - le) / 2;
}
printf("%lld\n", mid-1);//有m个小于mid的数,所以第m大的数就是mid-1
}
//system("pause");
return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。