每一对顶点之间的最短路径----Floyd算法----(附完整代码)
程序员文章站
2024-03-17 09:44:16
...
1.Floyd算法
2.输出每两对顶点之间的最短距离
#include<stdio.h>
#include<stdlib.h>
#define MaxVertexNum 100
#define INFINITY 65535
//#define MaxSize 10
typedef int Vertex;
typedef int WeightType;
typedef char DataType;
//图的数据结构
typedef struct GNode * PtrToGNode;
struct GNode{
int Nv;
int Ne;
WeightType G[MaxVertexNum][MaxVertexNum];
DataType Data[MaxVertexNum];
};
typedef PtrToGNode MGraph;
typedef struct ENode * PtrToENode;
struct ENode{
Vertex V1,V2;
WeightType Weight;
};
typedef PtrToENode Edge;
//队列的数据结构
typedef int ElementType;
typedef struct QNode * PtrToQNode;
struct QNode{
int * Data;
int Front,Rear;
int MaxSize;
};
typedef PtrToQNode Queue;
bool Visited[]={false};
//队列的算法
//创建队列
Queue CreateQueue(int MaxSize){
Queue Q = (Queue)malloc (sizeof(struct QNode));
Q->Data=(ElementType *)malloc(MaxSize * sizeof(ElementType));
Q->Front=Q->Rear=0;
Q->MaxSize=MaxSize;
return Q;
}
//入队
bool IsFull(Queue Q){
return ((Q->Rear+1) % Q->MaxSize == Q->Front);
}
bool AddQ(Queue Q,int X){
if(IsFull(Q)){
printf("队列满\n");
}else{
Q->Rear=(Q->Rear+1) % Q->MaxSize;
Q->Data[Q->Rear] = X;
return true;
}
}
bool IsEmpty(Queue Q){
return (Q->Front==Q->Rear);
}
#define ERROR -1
int DeleteQ(Queue Q){
if(IsEmpty(Q)){
printf("队列空\n");
return ERROR;
}else{
Q->Front=(Q->Front+1) % Q->MaxSize;
return Q->Data[Q->Front];
}
}
MGraph CreateGraph(int VertexNum){
Vertex V,W;
MGraph Graph;
Graph=(MGraph)malloc(sizeof(struct GNode));
Graph->Nv=VertexNum;
Graph->Ne=0;
for(V=0;V<Graph->Nv;V++)
for(W=0;W<Graph->Nv;W++)
Graph->G[V][W]=INFINITY;
return Graph;
}
void InsertEdge(MGraph Graph,Edge E){
Graph->G[E->V1][E->V2]=E->Weight;
Graph->G[E->V2][E->V1]=E->Weight;
}
MGraph BuildGraph(){
MGraph Graph;
Edge E;
Vertex V;
int Nv,i;
printf("请输入顶点个数: ");
scanf("%d",&Nv);
Graph=CreateGraph(Nv);
printf("请输入边的个数: ");
scanf("%d",&(Graph->Ne));
if(Graph->Ne!=0){
E=(Edge)malloc(sizeof(struct ENode));
for(i=0;i<Graph->Ne;i++){
//输入带权重的边
printf("读入边,格式为起点 终点 权重。请输入: ");
scanf("%d %d %d",&E->V1,&E->V2,&E->Weight);
InsertEdge(Graph,E);
}
}
// for(V=0;V<Graph->Nv;V++)
// scanf("%c",&(Graph->Data[V]));
return Graph;
}
Vertex FindMinDist(MGraph Graph,int dist[],int collected[]){
Vertex MinV,V;
int MinDist=INFINITY;
for(V=0;V<Graph->Nv;V++) {
if(collected[V]==false&&dist[V]<MinDist){
MinDist=dist[V];
MinV=V;
}
}
if(MinDist<INFINITY)
return MinV;
else return ERROR;
}
bool Floyd(MGraph Graph,WeightType D[][MaxVertexNum],Vertex path[][MaxVertexNum]){
Vertex i,j,k;
for(i=0;i<Graph->Nv;i++)
for(j=0;j<Graph->Nv;j++){
D[i][j]=Graph->G[i][j];
path[i][j]=-1;
}
for(k=0;k<Graph->Nv;k++)
for(i=0;i<Graph->Nv;i++)
for(j=0;j<Graph->Nv;j++)
if(D[i][k]+D[k][j]<D[i][j]){
D[i][j]=D[i][k]+D[k][j];
if(i==j&&D[i][j]<0)
return false;
path[i][j]=k;
}
// for(i=0;i<Graph->Nv-1;i++)
// for(j=i+1;j<Graph->Nv;j++)
// printf("顶点%d到顶点%d之间的最小距离为%d :\n",i,j,D [i][j]);
return true;
}
int main(){
MGraph graph= BuildGraph();
int D[30][MaxVertexNum],path[30][MaxVertexNum];
int z,i,j;
// printf("请输入起点: ");
// scanf("%d",&z);
Floyd(graph,D,path);
for(i=0;i<graph->Nv-1;i++)
for(j=i+1;j<graph->Nv;j++)
printf("顶点%d到顶点%d之间的最小距离为%d :\n",i,j,D [i][j]);
return 0;
}
运行结果:
上一篇: 属性动画PropertyAnimation源码分析 (api28)
下一篇: 21:角谷猜想