欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

数据库索引的数据结构——B-树/B+树

程序员文章站 2024-03-16 14:22:34
...

一、 常见的查询算法

我们知道,数据库查询是数据库的最主要功能之一。我们都希望查询数据的速度能尽可能的快,因此数据库系统的设计者会从查询算法的角度进行优化。那么有哪些查询算法可以使查询速度变得更快呢?

1. 顺序查找

最基本的查询算法当然是顺序查找,也就是对比每个元素的方法,不过这种算法在数据量很大时效率是极低的。

数据结构:有序或无序队列
复杂度:O(n)
缺点:检索效率低

2. 二分查找

比顺序查找更快的查询方法应该就是二分查找了,二分查找的原理是查找过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。如果在某一步骤数组为空,则代表找不到。

实例代码:

int BinarySearch2(int a[], int value, int low, int high)
{
    int mid = low+(high-low)/2;
    if(a[mid]==value)
        return mid;
    if(a[mid]>value)
        return BinarySearch2(a, value, low, mid-1);
    if(a[mid]<value)
        return BinarySearch2(a, value, mid+1, high);
}

数据结构:有序数组
复杂度:O(logn)
缺点:需要所有元素有序

3. 二叉查找树查找

二叉查找树的特点是:
若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
它的左、右子树也分别为二叉查找树。
数据库索引的数据结构——B-树/B+树

二叉查找树

数据库索引的数据结构——B-树/B+树
红黑树(自平衡二叉查找树)

搜索的原理:
若b是空树,则搜索失败,否则:
若x等于b的根节点的数据域之值,则查找成功;否则:
若x小于b的根节点的数据域之值,则搜索左子树;否则:
查找右子树。

但是,在大规模数据存储的时候,红黑树往往出现由于树的深度过大而造成磁盘IO读写过于频繁,进而导致效率低下的情况。为什么会出现这样的情况,首先我们知道要获取磁盘上数据,必须先通过磁盘移动臂移动到数据所在的柱面,然后找到指定盘面,接着旋转盘面找到数据所在的磁道,最后对数据进行读写。磁盘IO代价主要花费在查找所需的柱面上,树的深度过大会造成磁盘IO频繁读写。所以,我们需要通过某种较好的树结构尽量降低树的高度。

数据结构:二叉查找树
时间复杂度: O(log2N)
缺点:树的深度过大,磁盘读写频繁,效率低下。

4. 哈希散列法(哈希表)

其原理是首先根据key值和哈希函数创建一个哈希表(散列表),然后根据键值,通过散列函数,定位数据元素位置。

  • hash索引仅满足“=”、“IN”和“<=>”查询,不能使用范围查询: 因为hash索引比较的是经过hash运算之后的hash值,因此只能进行等值的过滤,不能基于范围的查找,因为经过hash算法处理后的hash值的大小关系,并不能保证与处理前的hash大小关系对应。

  • hash索引无法被用来进行数据的排序操作: 由于hash索引中存放的都是经过hash计算之后的值,而hash值的大小关系不一定与hash计算之前的值一样,所以数据库无法利用hash索引中的值进行排序操作。

  • 对于组合索引,Hash 索引在计算 Hash 值的时候是组合索引键合并后再一起计算 Hash 值,而不是单独计算 Hash 值,所以通过组合索引的前面一个或几个索引键进行查询的时候,Hash 索引也无法被利用。

  • Hash 索引遇到大量Hash值相等的情况后性能并不一定就会比B-Tree索引高。

数据结构:哈希表
时间复杂度:几乎是O(1),取决于产生冲突的多少。
缺点:根据经过hash算法计算出来的hash值和原key值并不一一对应,所以只能进行等值的过滤,不能基于范围的查找,所以一般用于全文索引。

二、 分析B-Tree/B+Tree

1. B-Tree

数据库索引的数据结构——B-树/B+树
为了描述B-Tree,首先定义一条数据记录为一个二元组[key, data],key为记录的键值,对于不同数据记录,key是互不相同的;data为数据记录除key外的数据。那么B-Tree是满足下列条件的数据结构:

  1. d为大于1的一个正整数,称为B-Tree的度。

  2. h为一个正整数,称为B-Tree的高度。

  3. 每个非叶子节点由n-1个key和n个指针组成,其中d<=n<=2d。

  4. 每个叶子节点最少包含一个key和两个指针,最多包含2d-1个key和2d个指针,叶节点的指针均为null 。

  5. 所有叶节点具有相同的深度,等于树高h。

  6. key和指针互相间隔,节点两端是指针。

  7. 一个节点中的key从左到右非递减排列。

  8. 所有节点组成树结构。

  9. 每个指针要么为null,要么指向另外一个节点。

  10. 如果某个指针在节点node最左边且不为null,则其指向节点的所有key小于v(key1),其中v(key1)为node的第一个key的值。

  11. 如果某个指针在节点node最右边且不为null,则其指向节点的所有key大于v(keym),其中v(keym)为node的最后一个key的值。

  12. 如果某个指针在节点node的左右相邻key分别是keyi和keyi+1且不为null,则其指向节点的所有key小于v(keyi+1)且大于v(keyi)。

由于B-Tree的特性,在B-Tree中按key检索数据的算法非常直观:首先从根节点进行二分查找,如果找到则返回对应节点的data,否则对相应区间的指针指向的节点递归进行查找,直到找到节点或找到null指针,前者查找成功,后者查找失败。B-Tree上查找算法的伪代码如下:

BTree_Search(node, key) {
    if(node == null) return null;
    foreach(node.key)
    {
        if(node.key[i] == key) return node.data[i];
            if(node.key[i] > key) return BTree_Search(point[i]->node);
    }
    return BTree_Search(point[i+1]->node);
}
data = BTree_Search(root, my_key);

关于B-Tree有一系列有趣的性质,例如一个度为d的B-Tree,设其索引N个key,则其树高h的上限为logd((N+1)/2),检索一个key,其查找节点个数的渐进复杂度为O(logdN)。从这点可以看出,B-Tree是一个非常有效率的索引数据结构。

另外,由于插入删除新的数据记录会破坏B-Tree的性质,因此在插入删除时,需要对树进行一个分裂、合并、转移等操作以保持B-Tree性质。

2. B+Tree

数据库索引的数据结构——B-树/B+树
B-Tree有许多变种,其中最常见的是B+Tree,例如MySQL就普遍使用B+Tree实现其索引结构。

与B-Tree相比,B+Tree有以下不同点:

  1. 每个节点的指针上限为2d而不是2d+1。

  2. 内节点不存储data,只存储key;叶子节点不存储指针。

一般在数据库系统或文件系统中使用的B+Tree结构都在经典B+Tree的基础上进行了优化,增加了顺序访问指针。

数据库索引的数据结构——B-树/B+树
在B+Tree的每个叶子节点增加一个指向相邻叶子节点的指针,就形成了带有顺序访问指针的B+Tree。做这个优化的目的是为了提高区间访问的性能,例如上图中如果要查询key为从18到49的所有数据记录,当找到18后,只需顺着节点和指针顺序遍历就可以一次性访问到所有数据节点,极大提到了区间查询效率。

3. 为什么要使用B+树

  • 局部性原理:如果一个存储器的位置被引用,那么将来它附近的位置也会被引用。

  • 索引的存取:一般来说,索引本身也很大,不可能全部存储在内存中,因此索引往往以索引文件的形式存储的磁盘上。这样的话,索引查找过程中就要产生磁盘I/O消耗,相对于内存存取,I/O存取的消耗要高几个数量级,所以评价一个数据结构作为索引的优劣最重要的指标就是在查找过程中磁盘I/O操作次数的渐进复杂度。换句话说,索引的结构组织要尽量减少查找过程中磁盘I/O的存取次数。

  • 磁盘预读:由于存储介质的特性,磁盘本身存取就比主存慢很多,再加上机械运动耗费,磁盘的存取速度往往是主存的几百分分之一,因此为了提高效率,要尽量减少磁盘I/O。为了达到这个目的,磁盘往往不是严格按需读取,而是每次都会预读,即使只需要一个字节,磁盘也会从这个位置开始,顺序向后读取一定长度的数据放入内存。这样做的理论依据就是是计算机科学中著名的局部性原理:如果一个存储器的位置被引用,那么将来它附近的位置也会被引用。而程序运行期间所需要的数据通常比较集中。
    由于磁盘顺序读取的效率很高(不需要寻道时间,只需很少的旋转时间),因此对于具有局部性的程序来说,预读可以提高I/O效率。
    预读的长度一般为页(page)的整倍数。页是计算机管理存储器的逻辑块,硬件及操作系统往往将主存和磁盘存储区分割为连续的大小相等的块,每个存储块称为一页(在许多操作系统中,页得大小通常为4k),主存和磁盘以页为单位交换数据。当程序要读取的数据不在主存中时,会触发一个缺页异常,此时系统会向磁盘发出读盘信号,磁盘会找到数据的起始位置并向后连续读取一页或几页载入内存中,然后异常返回,程序继续运行。

4. B-/+Tree索引的性能分析

上文说过一般使用磁盘I/O次数评价索引结构的优劣。先从B-Tree分析,根据B-Tree的定义,可知检索一次最多需要访问h个节点。为了达到这个目的,在实际实现B-Tree还需要使用如下技巧:

  1. 每次新建节点时,直接申请一个页的空间,这样就保证一个节点物理上也存储在一个页里,加之计算机存储分配都是按页对齐的,就实现了一个node只需一次I/O。
  2. B-Tree中一次检索最多需要h-1次I/O(根节点常驻内存),渐进复杂度为O(h)=O(logdN)。一般实际应用中,出度d是非常大的数字,通常超过100,因此h非常小(通常不超过3)。

综上所述,用B-Tree作为索引结构效率是非常高的。
而红黑树这种结构,h明显要深的多。由于逻辑上很近的节点(父子)物理上可能很远,无法利用局部性,所以红黑树的I/O渐进复杂度也为O(h),效率明显比B-Tree差很多。

上文还说过,B+Tree更适合外存索引,原因和内节点出度d有关。从上面分析可以看到,d越大索引的性能越好,而出度的上限取决于节点内key和data的大小:

dmax=floor(pagesize/(keysize+datasize+pointsize))
由于B+Tree内节点去掉了data域,因此可以拥有更大的出度,拥有更好的性能。

5. MyISAM和InnoDB的索引结构

MyISAM使用B+Tree作为索引结构,叶节点的data域存放的是数据记录的地址。下图是MyISAM索引的原理图:
数据库索引的数据结构——B-树/B+树

这里设表一共有三列,假设我们以Col1为主键,则上图是一个MyISAM表的主索引(Primary key)示意。可以看出MyISAM的索引文件仅仅保存数据记录的地址。在MyISAM中,主索引和辅助索引(Secondary key)在结构上没有任何区别,只是主索引要求key是唯一的,而辅助索引的key可以重复。如果我们在Col2上建立一个辅助索引,则此索引的结构如下图所示:
数据库索引的数据结构——B-树/B+树

同样也是一颗B+Tree,data域保存数据记录的地址。因此,MyISAM中索引检索的算法为首先按照B+Tree搜索算法搜索索引,如果指定的Key存在,则取出其data域的值,然后以data域的值为地址,读取相应数据记录。MyISAM的索引方式也叫做非聚集索引。

虽然InnoDB也使用B+Tree作为索引结构,但具体实现方式却与MyISAM截然不同。

第一个重大区别是InnoDB的数据文件本身就是索引文件。从上文知道,MyISAM索引文件和数据文件是分离的,索引文件仅保存数据记录的地址。而在InnoDB中,表数据文件本身就是按B+Tree组织的一个索引结构,这棵树的叶节点data域保存了完整的数据记录。这个索引的key是数据表的主键,因此InnoDB表数据文件本身就是主索引。

数据库索引的数据结构——B-树/B+树

上图是InnoDB主索引(同时也是数据文件)的示意图,可以看到叶节点包含了完整的数据记录。这种索引叫做聚集索引。因为InnoDB的数据文件本身要按主键聚集,所以InnoDB要求表必须有主键(MyISAM可以没有),如果没有显式指定,则MySQL系统会自动选择一个可以唯一标识数据记录的列作为主键,如果不存在这种列,则MySQL自动为InnoDB表生成一个隐含字段作为主键,这个字段长度为6个字节,类型为长整形。

第二个与MyISAM索引的不同是InnoDB的辅助索引data域存储相应记录主键的值而不是地址。换句话说,InnoDB的所有辅助索引都引用主键作为data域。例如,下图为定义在Col3上的一个辅助索引:
数据库索引的数据结构——B-树/B+树

这里以英文字符的ASCII码作为比较准则。聚集索引这种实现方式使得按主键的搜索十分高效,但是辅助索引搜索需要检索两遍索引:首先检索辅助索引获得主键,然后用主键到主索引中检索获得记录。

了解不同存储引擎的索引实现方式对于正确使用和优化索引都非常有帮助,例如知道了InnoDB的索引实现后,就很容易明白为什么不建议使用过长的字段作为主键,因为所有辅助索引都引用主索引,过长的主索引会令辅助索引变得过大。再例如,用非单调的字段作为主键在InnoDB中不是个好主意,因为InnoDB数据文件本身是一颗B+Tree,非单调的主键会造成在插入新记录时数据文件为了维持B+Tree的特性而频繁的分裂调整,十分低效,而使用自增字段作为主键则是一个很好的选择。

6. 使用索引的禁忌

既然索引可以加快查询速度,那么是不是只要是查询语句需要,就建上索引?答案是否定的。因为索引虽然加快了查询速度,但索引也是有代价的:索引文件本身要消耗存储空间,同时索引会加重插入、删除和修改记录时的负担,另外,MySQL在运行时也要消耗资源维护索引,因此索引并不是越多越好。一般两种情况下不建议建索引。

  1. 表记录比较少不建议建立索引,例如一两千条甚至只有几百条记录的表,没必要建索引,让查询做全表扫描就好了。至于多少条记录才算多,这个个人有个人的看法,我个人的经验是以2000作为分界线,记录数不超过 2000可以考虑不建索引,超过2000条可以酌情考虑索引。

  2. 索引的选择性较低不建议建立。所谓索引的选择性(Selectivity),是指不重复的索引值(也叫基数,Cardinality)与表记录数(#T)的比值:
    Index Selectivity = Cardinality / #T
    显然选择性的取值范围为(0, 1],选择性越高的索引价值越大,这是由B+Tree的性质决定的。

  3. 在使用InnoDB存储引擎时,如果没有特别的需要,请永远使用一个与业务无关的自增字段作为主键。
    经常看到有帖子或博客讨论主键选择问题,有人建议使用业务无关的自增主键,有人觉得没有必要,完全可以使用如学号或身份证号这种唯一字段作为主键。不论支持哪种论点,大多数论据都是业务层面的。如果从数据库索引优化角度看,使用InnoDB引擎而不使用自增主键绝对是一个糟糕的主意。
    上文讨论过InnoDB的索引实现,InnoDB使用聚集索引,数据记录本身被存于主索引(一颗B+Tree)的叶子节点上。这就要求同一个叶子节点内(大小为一个内存页或磁盘页)的各条数据记录按主键顺序存放,因此每当有一条新的记录插入时,MySQL会根据其主键将其插入适当的节点和位置,如果页面达到装载因子(InnoDB默认为15/16),则开辟一个新的页(节点)。
    如果表使用自增主键,那么每次插入新的记录,记录就会顺序添加到当前索引节点的后续位置,当一页写满,就会自动开辟一个新的页。如下图所示:
    数据库索引的数据结构——B-树/B+树
    这样就会形成一个紧凑的索引结构,近似顺序填满。由于每次插入时也不需要移动已有数据,因此效率很高,也不会增加很多开销在维护索引上。
    如果使用非自增主键(如果身份证号或学号等),由于每次插入主键的值近似于随机,因此每次新纪录都要被插到现有索引页得中间某个位置:
    数据库索引的数据结构——B-树/B+树
    此时MySQL不得不为了将新记录插到合适位置而移动数据,甚至目标页面可能已经被回写到磁盘上而从缓存中清掉,此时又要从磁盘上读回来,这增加了很多开销,同时频繁的移动、分页操作造成了大量的碎片,得到了不够紧凑的索引结构,后续不得不通过OPTIMIZE TABLE来重建表并优化填充页面。

索引使用的规则示例

该示例数据库导入 > https://download.csdn.net/download/u013257679/10607152

show index from employees.titles;

-- 全列匹配
EXPLAIN SELECT * FROM employees.titles WHERE emp_no='10001' AND title='Senior Engineer' AND from_date='1986-06-26';
EXPLAIN SELECT * FROM employees.titles WHERE title='Senior Engineer' AND from_date='1986-06-26' AND emp_no='10001';  


-- 最左前缀匹配
EXPLAIN SELECT * FROM employees.titles WHERE emp_no='10001';
EXPLAIN SELECT * FROM employees.titles WHERE emp_no='10001' AND title='Senior Engineer';
EXPLAIN SELECT * FROM employees.titles WHERE title='Senior Engineer' AND from_date='1986-06-26';


-- 查询条件用到了索引中列的精确匹配,但是中间某个条件未提供。
EXPLAIN SELECT * FROM employees.titles WHERE emp_no='10001' AND from_date='1986-06-26';

-- 使用in全值匹配 或者加辅助索引
EXPLAIN SELECT * FROM employees.titles
WHERE emp_no='10001'
AND title IN ('Senior Engineer', 'Staff', 'Engineer', 'Senior Staff', 'Assistant Engineer', 'Technique Leader', 'Manager')
AND from_date='1986-06-26';

-- SHOW PROFILES;

-- 查询条件没有指定索引第一列。
EXPLAIN SELECT * FROM employees.titles WHERE from_date='1986-06-26';

-- 匹配某列的前缀字符串
EXPLAIN SELECT * FROM employees.titles WHERE emp_no='10001' AND title LIKE '%Senior';

-- 范围查询
EXPLAIN SELECT * FROM employees.titles WHERE emp_no < '10010' and title='Senior Engineer';

EXPLAIN SELECT * FROM employees.titles
WHERE emp_no > '10001' and emp_no < '10010'
AND title='Senior Engineer'
AND from_date = '1986-01-01';


EXPLAIN SELECT * FROM employees.titles
WHERE emp_no BETWEEN '10001' and '10010'
AND title='Senior Engineer'
AND from_date = '1986-01-01';



-- 怎么建立联合索引

show index from employees.employees;

EXPLAIN SELECT * FROM employees.employees where emp_no = '10001';

EXPLAIN SELECT * FROM employees.employees WHERE first_name='Eric' AND last_name='Anido';

-- 前缀索引
SELECT count(DISTINCT(first_name))/count(*) AS Selectivity FROM employees.employees;

SELECT count(DISTINCT(last_name))/count(*) AS Selectivity FROM employees.employees;


-- 基准
SELECT count(DISTINCT(concat(first_name, last_name)))/count(*) AS Selectivity FROM employees.employees;

-- 选择性 0.7879
SELECT count(DISTINCT(concat(first_name, left(last_name, 3))))/count(*) AS Selectivity FROM employees.employees;

-- 选择性 0.9007
SELECT count(DISTINCT(concat(first_name, left(last_name, 4))))/count(*) AS Selectivity FROM employees.employees;

-- key_len的计算规则
-- 所有的索引字段,如果没有设置not null,则需要加一个字节。
-- 定长字段,int占四个字节、date占三个字节、char(n)占n个字符。
-- 对于变成字段varchar(n),则有n个字符+两个字节。
-- 不同的字符集,一个字符占用的字节数不同。latin1编码的,一个字符占用一个字节,gbk编码的,一个字符占用两个字节,utf8编码的,一个字符占用三个字节。
-- key_len 22
ALTER TABLE employees.employees
ADD INDEX `first_name_last_name4` (first_name, last_name(4));

-- key_len 34
ALTER TABLE employees.employees
ADD INDEX `first_name_last_name5` (first_name, last_name);

ALTER TABLE employees drop index `first_name_last_name5`

参考:

https://blog.csdn.net/qq_35644234/article/details/65937923

https://blog.csdn.net/ranjea/article/details/8944518

https://blog.csdn.net/zq602316498/article/details/39323803

https://www.cs.usfca.edu/~galles/visualization/Algorithms.html