欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

单层神经网络(感知器)的python实现

程序员文章站 2024-03-14 11:32:58
...

构造一个单层网络,**函数是sigmoid,损失函数是均方根。

参数w0和b0,输入X,输入层L0,输出层L1,预测值Y,lr(n)学习速率

单层神经网络(感知器)的python实现

python如下:

import numpy as np

# sigmoid function 
def sig(x):
    return (1/(1+np.exp(-x)))

def deridig(y):
    return y*(1-y)

# input dataset
X = np.array([  [0,0,1],
                [0,1,1],
                [1,0,1],
                [1,1,1] ])

# output dataset
y = np.array([[0,0,1,1]]).T

#
np.random.seed(1)

# initialize weights randomly with mean 0
w0 = 2*np.random.random((3,1)) - 1
b0=1
lr=1
print ('w000',w0)
for iter in range(10000):
    # forward propagation
    l0 = X
    l1 = sig(np.dot(l0,w0)+b0)
    #print ('l1',l1)
    # how much did we miss?
    E_error=(y-l1)*(y-l1)
    # update weights
    w0 += 1*np.dot(l0.T,2*(y-l1) *deridig(l1))
    b0 += 1*2*(y-l1) *deridig(l1)
    #print ('w0',w0)
    
print ("Output After Training:")
print (l1)
print ("w0 After Training:")
print (w0)
print ("b0 After Training:")
print (b0)

循环10000次后的结果:

Output After Training:
[[ 0.00411501]
 [ 0.00384688]
 [ 0.99675082]
 [ 0.99643784]]
w0 After Training:
[[ 5.05661648]
 [-0.2814999 ]
 [-2.84714308]]
b0 After Training:
[[-2.64189825]
 [-2.42804605]
 [ 3.51667531]
 [ 3.70589715]]


上一篇: cmake

下一篇: c11右值与移动语义