欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

关联规则算法(Apriori)在Python上的实现

程序员文章站 2024-03-08 19:39:10
...

定义

       关联分析又称关联挖掘,就是在交易数据、关系数据或其他信息载体中,查找存在于项目集合或对象集合之间的频繁模式、关联、相关性或因果结构。可从数据库中关联分析出形如“由于某些事件的发生而引起另外一些事件的发生”之类的规则。如“67%的顾客在购买啤酒的同时也会购买尿布”,因此通过合理的啤酒和尿布的货架摆放或捆绑销售可提高超市的服务质量和效益。又如“‘C语言’课程优秀的同学,在学习‘数据结构’时为优秀的可能性达88%”,那么就可以通过强化“C语言”的学习来提高教学效果。

相关名词

示例1:如下是一个超市几名顾客的交易信息。

 

TID Items
001 Cola, Egg, Ham
002 Cola, Diaper, Beer
003 Cola, Diaper, Beer, Ham
004 Diaper, Beer

TID代表交易流水号,Items代表一次交易的商品。

我们对这个数据集进行关联分析,可以找出关联规则{Diaper}→{Beer}。
  它代表的意义是:购买了Diaper的顾客会购买Beer。这个关系不是必然的,但是可能性很大,这就已经足够用来辅助商家调整Diaper和Beer的摆放位置了,例如摆放在相近的位置,进行捆绑促销来提高销售量。

1、事务:每一条交易称为一个事务,例如示例1中的数据集就包含四个事务。
  2、项:交易的每一个物品称为一个项,例如Cola、Egg等。
  3、项集:包含零个或多个项的集合叫做项集,例如{Cola, Egg, Ham}。
  4、k−项集:包含k个项的项集叫做k-项集,例如{Cola}叫做1-项集,{Cola, Egg}叫做2-项集。
  5、支持度计数:一个项集出现在几个事务当中,它的支持度计数就是几。例如{Diaper, Beer}出现在事务 002、003和004中,所以它的支持度计数是3。
  6、支持度:支持度计数除于总的事务数。例如上例中总的事务数为4,{Diaper, Beer}的支持度计数为3,所以它的支持度是3÷4=75%,说明有75%的人同时买了Diaper和Beer。
  7、频繁项集:支持度大于或等于某个阈值的项集就叫做频繁项集。例如阈值设为50%时,因为{Diaper, Beer}的支持度是75%,所以它是频繁项集。
  8、前件和后件:对于规则{Diaper}→{Beer},{Diaper}叫做前件,{Beer}叫做后件。
  9、置信度:对于规则{Diaper}→{Beer},{Diaper, Beer}的支持度计数除于{Diaper}的支持度计数,为这个规则的置信度。例如规则{Diaper}→{Beer}的置信度为3÷3=100%。说明买了Diaper的人100%也买了Beer。
  10、强关联规则:大于或等于最小支持度阈值和最小置信度阈值的规则叫做强关联规则。关联分析的最终目标就是要找出强关联规则。

案例

以下是某餐厅菜品订单事务集,每一行代表一条事务,挖掘其中菜品之间的联系

关联规则算法(Apriori)在Python上的实现

python代码

Apriori算法脚本,命名为apriori.py

#-*- coding: utf-8 -*-
from __future__ import print_function
import pandas as pd

#自定义连接函数,用于实现L_{k-1}到C_k的连接
def connect_string(x, ms):
  x = list(map(lambda i:sorted(i.split(ms)), x))
  l = len(x[0])
  r = []
  for i in range(len(x)):
    for j in range(i,len(x)):
      if x[i][:l-1] == x[j][:l-1] and x[i][l-1] != x[j][l-1]:
        r.append(x[i][:l-1]+sorted([x[j][l-1],x[i][l-1]]))
  return r

#寻找关联规则的函数
def find_rule(d, support, confidence, ms = u'--'):
  result = pd.DataFrame(index=['support', 'confidence']) #定义输出结果
  
  support_series = 1.0*d.sum()/len(d) #支持度序列
  column = list(support_series[support_series > support].index) #初步根据支持度筛选
  k = 0
  
  while len(column) > 1:
    k = k+1
    print(u'\n正在进行第%s次搜索...' %k)
    column = connect_string(column, ms)
    print(u'数目:%s...' %len(column))
    sf = lambda i: d[i].prod(axis=1, numeric_only = True) #新一批支持度的计算函数
    
    #创建连接数据,这一步耗时、耗内存最严重。当数据集较大时,可以考虑并行运算优化。
    d_2 = pd.DataFrame(list(map(sf,column)), index = [ms.join(i) for i in column]).T
    
    support_series_2 = 1.0*d_2[[ms.join(i) for i in column]].sum()/len(d) #计算连接后的支持度
    column = list(support_series_2[support_series_2 > support].index) #新一轮支持度筛选
    support_series = support_series.append(support_series_2)
    column2 = []
    
    for i in column: #遍历可能的推理,如{A,B,C}究竟是A+B-->C还是B+C-->A还是C+A-->B?
      i = i.split(ms)
      for j in range(len(i)):
        column2.append(i[:j]+i[j+1:]+i[j:j+1])
    
    cofidence_series = pd.Series(index=[ms.join(i) for i in column2]) #定义置信度序列
 
    for i in column2: #计算置信度序列
      cofidence_series[ms.join(i)] = support_series[ms.join(sorted(i))]/support_series[ms.join(i[:len(i)-1])]
    
    for i in cofidence_series[cofidence_series > confidence].index: #置信度筛选
      result[i] = 0.0
      result[i]['confidence'] = cofidence_series[i]
      result[i]['support'] = support_series[ms.join(sorted(i.split(ms)))]
  
  result = result.T.sort_values(['confidence','support'], ascending = False) #结果整理,输出
  return result

 

主脚本

 

#-*- coding: utf-8 -*-
#使用Apriori算法挖掘菜品订单关联规则
from __future__ import print_function
import pandas as pd
from apriori import * #导入自行编写的apriori函数

inputfile = 'G:/chapter5/demo/data/menu_orders.xls' #输入文件路径
outputfile = 'C:/Users/yangge/Desktop/result.xlsx' #结果文件路径
data = pd.read_excel(inputfile, header = None)

print(u'\n转换原始数据至0-1矩阵...')
ct = lambda x : pd.Series(1, index = x[pd.notnull(x)]) #转换0-1矩阵的过渡函数
b = map(ct, data.as_matrix()) #用map方式执行
data = pd.DataFrame(list(b)).fillna(0) #实现矩阵转换,空值用0填充
print(u'\n转换完毕。')
del b #删除中间变量b,节省内存

support = 0.2 #最小支持度
confidence = 0.5 #最小置信度
ms = '-' #连接符,默认'--',用来区分不同元素,如A--B。需要保证原始表格中不含有该字符

find_rule(data, support, confidence, ms).to_excel(outputfile) #保存结果
print("计算结束!")

 

运行结果

 

关联规则算法(Apriori)在Python上的实现

第一条输出结果解释:客户同时点菜品3和菜品2的概率是30%,点了菜品3再点菜品2的概率是100%。

最后一条输出结果解释:客户同时点菜品1、菜品2和菜品4的概率是30%,点了菜品1和菜品2再点菜品4的概率是60%。

知道了这些可以对客户进行智能推荐,既能增加销量又能满足客户需求。

备注:承接模型代码实现(支持python、matlab),有意请联系QQ947943645 ,非诚勿扰!