tensorflow的第一个程序MINIST
程序员文章站
2024-03-08 16:16:52
...
# -*- coding: utf-8 -*-
"""
Created on Thu Nov 30 11:10:59 2017
@author: shier43
"""
#获得数据集
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("D:/documents/MINIST_data", one_hot=True)
#打印Training data size
print("Training data:",mnist.train.num_examples)
#打印Validating data size
import tensorflow as tf
#输入图像数据占位符
x = tf.placeholder(tf.float32, [None, 784])
#权值和偏差
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
#使用softmax模型
y = tf.nn.softmax(tf.matmul(x, W) + b)
#代价函数占位符
y_ = tf.placeholder(tf.float32, [None, 10])
#交叉熵评估代价
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
#使用梯度下降算法优化:学习速率为0.5
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
#Session
sess = tf.InteractiveSession()
#初始化变量
tf.global_variables_initializer().run()
#训练模型,训练1000次
for _ in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
#计算正确率
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
以上是运行的python程序
我是在spyder中运行的。
MINIST_data数据是之前下载好放到路径D:/documents/MINIST_data下的,因为临时下载会比较慢,还有可能下载失败。由图可知训练样本55000个,识别精度0.9184.