欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

我的第一个caffe Android程序

程序员文章站 2024-03-08 15:59:04
...

在上一篇文章《我的第一个caffe C++程序》中,说明了如何编写一个最简单的caffe C++程序,但我的最终目的是希望在Android app中使用caffe框架。所以接下来我就将模型测试程序testXOR移植到Android中,让Android app也能使用caffe深度学习框架。

caffe框架采用C++语言编写,具有良好的可移植性,不过官方代码并没有Android平台的移植。好在民间大神也很多,网上搜索了一把,发现已经有人做了caffe的Android平台移植,项目地址为:https://github.com/sh1r0/caffe-android-lib

编译caffe-android-lib

caffe-android-lib的编译,建议还是采取docker的方式进行构建。我尝试过使用本地的android NDK进行编译,发现NDK版本不同,编译存在一定的问题。caffe-android-lib项目主页上有docker构建方法:

git clone --recursive https://github.com/sh1r0/caffe-android-lib.git
cd caffe-android-lib
# build image
docker build -t caffe-android-lib .
# run a container for building your own caffe-android-lib, e.g.,
docker run --rm --name caffe-android-builder \
    -e ANDROID_ABI=x86_64 \
    -e N_JOBS=2 \
    -v $(pwd)/android_lib/x86_64:/caffe-android-lib/android_lib \
    caffe-android-lib ./build.sh

注意:指导上指定的ANDROID_ABI为x86_64,对于大多数手机而言,请修改为armeabi-v7a

编译好之后,caffe及关联库的头文件和库文件都位于android_lib目录下。在后面的步骤中,需要将这些头文件复制到示例工程下。

Android项目

在Android Studio中新建一个Android项目,跟着向导一步步来即可。然后将上一步骤的android_lib目录下的头文件和库文件复制过来,我把它们放在了cpp/third_party目录下了。caffe库是build为一个so,所以我将它放在了jniLibs目录下。

完整的项目源码可参考:https://gitee.com/mogoweb/dpexamples.git

在XORusingCAFFE-android目录下即为android版本的caffe示例程序。C++端的代码如下:

extern "C" JNIEXPORT jstring

JNICALL
Java_com_mogoweb_caffe_xorusingcaffe_MainActivity_startXORTest(
        JNIEnv *env,
        jobject /* this */,
        jstring modelProto,
        jstring caffeModel) {
    // caffe is using google logging (aka 'glog') as its logging module, and hence this module must be initialized once when running caffe.
    // Therefore the following line
    ::google::InitGoogleLogging("");

    // load the trained weights cached inside XOR_iter_5000000.caffemodel
    shared_ptr<Net<float> > testnet;

    std::string modelproto = jstring2string(env, modelProto);
    std::string caffemodel = jstring2string(env, caffeModel);
    __android_log_print(ANDROID_LOG_INFO, "XOR", "modelproto:%s, caffemodel:%s", modelproto.c_str(), caffemodel.c_str());
    testnet.reset(new Net<float>(modelproto, TEST));
    testnet->CopyTrainedLayersFrom(caffemodel);

    // obtain the input MemoryData layer and pass the input to it for testing
    float testab[] = {0, 0, 0, 1, 1, 0, 1, 1};
    float testc[] = {0, 1, 1, 0};

    MemoryDataLayer<float> *dataLayer_testnet = (MemoryDataLayer<float> *)(testnet->layer_by_name("test_inputdata").get());

    dataLayer_testnet->Reset(testab, testc, 4);

    // calculate the neural network output
    testnet->Forward();

    // access blobs to display results
    boost::shared_ptr<Blob<float> > output_layer = testnet->blob_by_name("output");

    const float* begin = output_layer->cpu_data();
    const float* end = begin + 4;

    // We know the output size is 4, and we save the outputs into the result vector
    vector<float> result(begin, end);

    // display the result
    char buf[512] = {0};
    string s;
    for (int i = 0; i < result.size(); i++) {
        sprintf(buf, "input: %d xor %d, truth: %d, result by NN: %f\n",
                (int)testab[i * 2 + 0], (int)testab[i * 2 + 1], (int)testc[i],result[i]);
        s += buf;
    }

    __android_log_print(ANDROID_LOG_INFO, "XOR", "test result:%s", s.c_str());
    return string2jstring(env, s);
}

相比linux版本的代码,有几处修改:

  1. 模型文件路径从Java层传递过来,也就是model.prototxt和XOR_iter_5000000.caffemodel文件的完整路径
  2. 输出结果通过JNI返回到Java层。

Java端的代码如下:

public class MainActivity extends AppCompatActivity {
    File sdcard = Environment.getExternalStorageDirectory();
    String modelDir = sdcard.getAbsolutePath();
    String modelProto = modelDir + "/model.prototxt";
    String modelBinary = modelDir + "/XOR_iter_5000000.caffemodel";

    // Used to load the 'native-lib' library on application startup.
    static {
        System.loadLibrary("native-lib");
        System.loadLibrary("caffe");
    }

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);

        final TextView tv = findViewById(R.id.result);
        Button btn = findViewById(R.id.start_test);
        btn.setOnClickListener(new View.OnClickListener() {
            @Override
            public void onClick(View view) {
                tv.setText(MainActivity.this.startXORTest(modelProto, modelBinary));
            }
        });
    }

    /**
     * A native method that is implemented by the 'native-lib' native library,
     * which is packaged with this application.
     */
    public native String startXORTest(String modelProto, String caffeModel);
}

代码中假设模型文件位于sdcard中,所以在运行代码之前,需要将model.prototxt和XOR_iter_5000000.caffemodel文件push到/sdcard/中。

adb push app/src/main/model/model.prototxt /sdcard/
adb push app/src/main/model/XOR_iter_5000000.caffemodel /sdcard/

代码编译与运行

使用android studio进行build,关键在于CMakeLists.txt的编写:

# For more information about using CMake with Android Studio, read the
# documentation: https://d.android.com/studio/projects/add-native-code.html

# Sets the minimum version of CMake required to build the native library.

cmake_minimum_required(VERSION 3.4.1)

# Creates and names a library, sets it as either STATIC
# or SHARED, and provides the relative paths to its source code.
# You can define multiple libraries, and CMake builds them for you.
# Gradle automatically packages shared libraries with your APK.

add_library( # Sets the name of the library.
             native-lib

             # Sets the library as a shared library.
             SHARED

             # Provides a relative path to your source file(s).
             src/main/cpp/native-lib.cpp )

add_definitions(-DCPU_ONLY)

add_compile_options(-std=c++11)

include_directories(${CMAKE_SOURCE_DIR}/src/main/cpp/third_party/caffe/include
                    ${CMAKE_SOURCE_DIR}/src/main/cpp/third_party/boost/include
                    ${CMAKE_SOURCE_DIR}/src/main/cpp/third_party/gflags/include
                    ${CMAKE_SOURCE_DIR}/src/main/cpp/third_party/glog/include
                    ${CMAKE_SOURCE_DIR}/src/main/cpp/third_party/protobuf/include
                    ${CMAKE_SOURCE_DIR}/src/main/cpp/third_party/openblas/include)

add_library(boost_system STATIC IMPORTED)
set_target_properties(boost_system
                           PROPERTIES
                           IMPORTED_LOCATION
                           ${CMAKE_SOURCE_DIR}/src/main/cpp/third_party/boost/lib/libboost_system.a )

add_library(caffe SHARED IMPORTED)
set_target_properties(caffe  PROPERTIES IMPORTED_LOCATION
                            ${CMAKE_SOURCE_DIR}/src/main/jniLibs/armeabi-v7a/libcaffe.so)


# Searches for a specified prebuilt library and stores the path as a
# variable. Because CMake includes system libraries in the search path by
# default, you only need to specify the name of the public NDK library
# you want to add. CMake verifies that the library exists before
# completing its build.

find_library( # Sets the name of the path variable.
              log-lib

              # Specifies the name of the NDK library that
              # you want CMake to locate.
              log )

# Specifies libraries CMake should link to your target library. You
# can link multiple libraries, such as libraries you define in this
# build script, prebuilt third-party libraries, or system libraries.

target_link_libraries( # Specifies the target library.
                       native-lib

                       # Links the target library to the log library
                       # included in the NDK.
                       ${log-lib}
                       caffe
                       boost_system)

需要注意的是:
1. 需要添加-DCPU_ONLY的定义,因为在Android app中,暂时还无法使用GPU
2. 需要加上caffe及相关库的头文件路径
3. 需要链接caffe及相关库

最后运行的结果和linux PC环境下的一致:

我的第一个caffe Android程序

参考

  1. 我的第一个caffe C++程序
  2. caffe-android-lib