四元数、欧拉角、旋转矩阵之间互相转换
程序员文章站
2024-03-07 18:21:39
...
一、理论
四元数
欧拉角
用R表示旋转矩阵,yaw(偏航) 、pitch(俯仰角) rol(横滚角)l分别表示Z Y X轴的转角,q=[q0,q1,q2,q3]'表示单位四元数;
欧拉角有两种:
静态:即绕世界坐标系三个轴的旋转,由于物体旋转过程中坐标轴保持静止,所以称为静态
动态:即绕物体坐标系三个轴的旋转,由于物体旋转过程中坐标轴随着物体做相同的转动,所以称为动态
使用动态欧拉角会出现万向锁现象;静态欧拉角不存在万向锁的问题。一个典型的万向锁问题可以表述如下:
先仰45°再俯90°,这与先俯90°再仰45°是等价的。事实上,一旦选择±90°作为俯角,就会导致第一次旋转和第三次旋转等价,
整个旋转表示系统被限制在只能绕竖直轴旋转,丢失了一个表示维度;这种角度为±90°的第二次旋转使得第一次和第三次旋转的旋转轴相同的现象,称作万向锁。
相关连接: http://v.youku.com/v_show/id_XNzkyOTIyMTI=.html
二、代码
#include <iostream>
#include <Eigen/Eigen>
#include <stdlib.h>
#include <Eigen/Geometry>
#include <Eigen/Core>
#include <vector>
#include <math.h>
using namespace std;
using namespace Eigen;
Eigen::Quaterniond euler2Quaternion(const double roll, const double pitch, const double yaw)
{
Eigen::AngleAxisd rollAngle(roll, Eigen::Vector3d::UnitZ());
Eigen::AngleAxisd yawAngle(yaw, Eigen::Vector3d::UnitY());
Eigen::AngleAxisd pitchAngle(pitch, Eigen::Vector3d::UnitX());
Eigen::Quaterniond q = rollAngle * yawAngle * pitchAngle;
cout << "Euler2Quaternion result is:" <<endl;
cout << "x = " << q.x() <<endl;
cout << "y = " << q.y() <<endl;
cout << "z = " << q.z() <<endl;
cout << "w = " << q.w() <<endl<<endl;
return q;
}
Eigen::Vector3d Quaterniond2Euler(const double x,const double y,const double z,const double w)
{
Eigen::Quaterniond q;
q.x() = x;
q.y() = y;
q.z() = z;
q.w() = w;
Eigen::Vector3d euler = q.toRotationMatrix().eulerAngles(2, 1, 0);
cout << "Quaterniond2Euler result is:" <<endl;
cout << "z = "<< euler[2] << endl ;
cout << "y = "<< euler[1] << endl ;
cout << "x = "<< euler[0] << endl << endl;
}
Eigen::Matrix3d Quaternion2RotationMatrix(const double x,const double y,const double z,const double w)
{
Eigen::Quaterniond q;
q.x() = x;
q.y() = y;
q.z() = z;
q.w() = w;
Eigen::Matrix3d R = q.normalized().toRotationMatrix();
cout << "Quaternion2RotationMatrix result is:" <<endl;
cout << "R = " << endl << R << endl<< endl;
return R;
}
Eigen::Quaterniond rotationMatrix2Quaterniond(Eigen::Matrix3d R)
{
Eigen::Quaterniond q = Eigen::Quaterniond(R);
q.normalize();
cout << "RotationMatrix2Quaterniond result is:" <<endl;
cout << "x = " << q.x() <<endl;
cout << "y = " << q.y() <<endl;
cout << "z = " << q.z() <<endl;
cout << "w = " << q.w() <<endl<<endl;
return q;
}
Eigen::Matrix3d euler2RotationMatrix(const double roll, const double pitch, const double yaw)
{
Eigen::AngleAxisd rollAngle(roll, Eigen::Vector3d::UnitZ());
Eigen::AngleAxisd yawAngle(yaw, Eigen::Vector3d::UnitY());
Eigen::AngleAxisd pitchAngle(pitch, Eigen::Vector3d::UnitX());
Eigen::Quaterniond q = rollAngle * yawAngle * pitchAngle;
Eigen::Matrix3d R = q.matrix();
cout << "Euler2RotationMatrix result is:" <<endl;
cout << "R = " << endl << R << endl<<endl;
return R;
}
Eigen::Vector3d RotationMatrix2euler(Eigen::Matrix3d R)
{
Eigen::Matrix3d m;
m = R;
Eigen::Vector3d euler = m.eulerAngles(0, 1, 2);
cout << "RotationMatrix2euler result is:" << endl;
cout << "x = "<< euler[2] << endl ;
cout << "y = "<< euler[1] << endl ;
cout << "z = "<< euler[0] << endl << endl;
return euler;
}
int main(int argc, char **argv)
{
//example
Eigen::Vector3d x_axiz,y_axiz,z_axiz;
x_axiz << 1,0,0;
y_axiz << 0,1,0;
z_axiz << 0,0,1;
Eigen::Matrix3d R;
R << x_axiz,y_axiz,z_axiz;
rotationMatrix2Quaterniond(R);
euler2RotationMatrix(0,0,0);
RotationMatrix2euler(R);
}