欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Python基于回溯法子集树模板解决找零问题示例

程序员文章站 2024-03-04 10:24:32
本文实例讲述了Python基于回溯法子集树模板解决找零问题。分享给大家供大家参考,具体如下: 问题 有面额10元、5元、2元、1元的硬币,数量分别为3个、5个、7个、1...

本文实例讲述了Python基于回溯法子集树模板解决找零问题。分享给大家供大家参考,具体如下:

问题

有面额10元、5元、2元、1元的硬币,数量分别为3个、5个、7个、12个。现在需要给顾客找零16元,要求硬币的个数最少,应该如何找零?或者指出该问题无解。

分析

元素——状态空间分析大法:四种面额的硬币看作4个元素,对应的数目看作各自的状态空间,遍历状态空间,其它的事情交给剪枝函数。

解的长度固定:4

解的编码:(x1,x2,x3,x4) 其中x1∈[0,1,2,3], x2∈[0,1,2,3,4,5], x3∈[0,1,2,...,7], x4∈[0,1,2,...,12]

求最优解,增添全局变量:best_x, best_num

套用回溯法子集树模板。

代码

'''找零问题'''
n = 4
a = [10, 5, 2, 1] # 四种面额
b = [3, 5, 7, 12] # 对应的硬币数目(状态空间)
m = 53 # 给定的金额
x = [0]*n  # 一个解(n元0-b[k]数组)
X = []  # 一组解
best_x = [] # 最佳解
best_num = 0 # 最少硬币数目
# 冲突检测
def conflict(k):
  global n,m, x, X, a, b, best_num
  # 部分解的金额已超
  if sum([p*q for p,q in zip(a[:k+1], x[:k+1])]) > m:
    return True
  # 部分解的金额加上剩下的所有金额不够
  if sum([p*q for p,q in zip(a[:k+1], x[:k+1])]) + sum([p*q for p,q in zip(a[k+1:], b[k+1:])]) < m:
    return True
  # 部分解的硬币个数超best_num
  num = sum(x[:k+1])
  if 0 < best_num < num:
    return True
  return False # 无冲突
# 回溯法(递归版本)
def subsets(k): # 到达第k个元素
  global n, a, b, x, X, best_x, best_num
  if k == n: # 超出最尾的元素
    #print(x)
    X.append(x[:]) # 保存(一个解)
    # 计算硬币数目,若最佳,则保存
    num = sum(x)
    if best_num == 0 or best_num > num:
      best_num = num
      best_x = x[:]
  else:
    for i in range(b[k]+1): # 遍历元素 a[k] 的可供选择状态: 0, 1, 2, ..., b[k] 个硬币
      x[k] = i
      if not conflict(k): # 剪枝
        subsets(k+1)
# 测试
subsets(0)
print(best_x)

效果图

Python基于回溯法子集树模板解决找零问题示例

更多关于Python相关内容可查看本站专题:《Python数据结构与算法教程》、《Python Socket编程技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总

希望本文所述对大家Python程序设计有所帮助。