欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

HDU4348 To the moon(可持久化线段树 + 标记永久化

程序员文章站 2024-03-03 16:23:16
...

Problem Description

Background
To The Moon is a independent game released in November 2011, it is a role-playing adventure game powered by RPG Maker.
The premise of To The Moon is based around a technology that allows us to permanently reconstruct the memory on dying man. In this problem, we’ll give you a chance, to implement the logic behind the scene.

You‘ve been given N integers A[1], A[2],…, A[N]. On these integers, you need to implement the following operations:

  1. C l r d: Adding a constant d for every {Ai | l <= i <= r}, and increase the time stamp by 1, this is the only operation that will cause the time stamp increase.
  2. Q l r: Querying the current sum of {Ai | l <= i <= r}.
  3. H l r t: Querying a history sum of {Ai | l <= i <= r} in time t.
  4. B t: Back to time t. And once you decide return to a past, you can never be access to a forward edition anymore.
    … N, M ≤ 105, |A[i]| ≤ 109, 1 ≤ l ≤ r ≤ N, |d| ≤ 104 … the system start from time 0, and the first modification is in time 1, t ≥ 0, and won’t introduce you to a future state.

Input

n m
A1 A2 … An
… (here following the m operations. )

Output

… (for each query, simply print the result. )

Sample Input

10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4

2 4
0 0
C 1 1 1
C 2 2 -1
Q 1 2
H 1 2 1

Sample Output

4
55
9
15

0
1

分析

这道题的关键在于 updateupdate 操作
由于懒标记的存在,传统的线段树是有 pushuppushuppushdownpushdown 操作的。
但是如果对于可持久化线段树,每次更新都 pushdownpushdown,就要开多很多个节点,会使空间和时间大大增加。
于是我们用到标记永久化思想!
就是,我们每次将标记覆盖区间后,再也不下传了。
每次查询的时候,对查询的区间加上查询路径上标记的贡献就可以了。(因为查询路径上的标记对区间的和是有贡献的)

代码如下

#include <bits/stdc++.h>
#define LL long long
#define N 100005
#define lson l, m, lch[rt]
#define rson m + 1, r, rch[rt]
using namespace std;
int t, root[N], lch[N * 25], rch[N * 25], tag[N * 25], cnt;
LL sum[N * 25], z = 1;
char o[3];
void build(int l, int r, int &rt){
	rt = ++cnt;
	if(l == r){
		scanf("%lld", &sum[rt]);
		return;
	}
	int m = l + r >> 1;
	build(lson);
	build(rson);
	sum[rt] = sum[lch[rt]] + sum[rch[rt]];
}
void update(int l, int r, int &rt, int a, int b, int c, int las){
	rt = ++cnt;
	sum[rt] = sum[las] + z * c * (min(r, b) - max(a, l) + 1);
	tag[rt] = tag[las];
	lch[rt] = lch[las];
	rch[rt] = rch[las];
	if(l >= a && r <= b){
		tag[rt] += c;
		return;
	}
	int m = l + r >> 1;
	if(a <= m) update(lson, a, b, c, lch[las]);
	if(b > m) update(rson, a, b, c, rch[las]);
}
LL query(int l, int r, int rt, int a, int b){
	if(l >= a && r <= b) return sum[rt];
	int m = l + r >> 1;
	LL ans = z * tag[rt] * (min(r, b) - max(a, l) + 1);
	if(a <= m) ans += query(lson, a, b);
	if(b > m) ans += query(rson, a, b);
	return ans;
}
int main(){
	int i, j, n, m, a, b, c;
	while(scanf("%d%d", &n, &m) != EOF){
		t = cnt = 0;
		memset(sum, 0, sizeof(sum));
		memset(root, 0, sizeof(root));
		memset(lch, 0, sizeof(lch));
		memset(rch, 0, sizeof(rch));
		memset(tag, 0, sizeof(tag));
		build(1, n, root[0]);
		for(i = 1; i <= m; i++){
			scanf("%s%d", o, &a);
			if(o[0] == 'B') t = a;
			else if(o[0] == 'C'){
				scanf("%d%d", &b, &c);
				t++;
				update(1, n, root[t], a, b, c, root[t - 1]);
			}
			else if(o[0] == 'H'){
				scanf("%d%d", &b, &c);
				printf("%lld\n", query(1, n, root[c], a, b));
			}
			else{
				scanf("%d", &b);
				printf("%lld\n", query(1, n, root[t], a, b));
			}
		}
	}
	return 0;
}