梯度下降与牛顿法(Python)
程序员文章站
2024-02-27 19:30:51
...
最近两天一直在复习李航老师的《统计学习方法》这本书上面的知识,看到了优化算法。推导了梯度下降与牛顿法的计算公式,并最终实现了相应python代码。想着记录下来,所以我就用这篇文章来记录一些要点。
梯度下降
关于梯度下降没什么好说的了,就主要是利用函数的一阶导。代码如下:
def gradient_descent_ld(grad, cur_x=0.1, learning_rate=0.01, precision=0.0001, max_iters=1000):
"""
一维问题的梯度下降法
:param grad: 目标函数的梯度
:param cur_x: 当前x值,通过参数可以提供初始值
:param learning_rate: 学习率,也相当于设置的步长
:param precision: 设置收敛精度
:param max_iters: 最大迭代次数
:return: 局部最小值x
"""
for i in range(max_iters):
grad_cur = grad(cur_x)
# 当梯度趋近于0时,视为收敛
if abs(grad_cur) < precision:
break
cur_x = cur_x - grad_cur * learning_rate
print("第%d次迭代的x值为:%f" % (i, cur_x))
print("局部最小值 x=", cur_x)
return cur_x
上面这段代码里的learning_rate步长是固定的,在[0,1]直接。但是根据定义来说,这应该是随着迭代的次数增加而变小的。这个应该不难理解,所以我在下面又实现了变步长的方法。
def gradient_descent_ld_decay(grad, cur_x=0.1, learning_rate=0.01, precision=0.0001, max_iters=1000, decay=0.5):
"""
一维问题的梯度下降法,变步长
:param grad: 目标函数的梯度
:param cur_x: 当前x值,通过参数可以提供初始值
:param learning_rate: 学习率,也相当于设置的步长
:param precision: 设置收敛精度
:param max_iters: 最大迭代次数
:param decay: 学习率衰减因子
:return:
"""
for i in range(max_iters):
# 新的步长
learning_rate = learning_rate * 1.0 / (1.0 + decay * i)
grad_cur = grad(cur_x)
# 当梯度趋近于0时,视为收敛
if abs(grad_cur) < precision:
break
cur_x = cur_x - grad_cur * learning_rate
print("第%d次迭代的x值为:%f" % (i, cur_x))
print("局部最小值 x=", cur_x)
return cur_x
其实步长变化公式就是这一步:
牛顿法
牛顿法其实就是求函数二阶导,通过二阶导的正负性来进一步判断极值的存在。
所以,这时候要判断函数的二阶导数。如果函数是多元函数的话,这时候就要引入一个新的概念了,叫海森矩阵(Hessian).具体怎么求,我这儿就不多说了,我们只需要记住一点。如果海森矩阵的行列式的值大于0,说明该函数有极值。我这儿要解释的一点就是关于向量对向量的求导了。具体是来自于这两步公式:
等式两边对x向量求导,可得:
这个当时有点让我迷糊了,其实可以转化为以下不等式:
其中,假设A为二阶矩阵,x为二维列向量。
其实,暴力解是可以得到答案的,比如下图所示:
但总觉得这样有失美观,所以找了一位数学系的同学,帮我重新整理了思路。她首先是把泰勒展开那两步公式给换了,如下图所示:
这才恍然大悟,代码如下:
def newton(f, x, iters):
"""
实现牛顿法
:param f: 原函数
:param x: 初始值
:param iters: 遍历的最大epoch
:return:
"""
Hessian_T = np.linalg.inv(hessian(f, x))
H_G = np.matmul(Hessian_T, jacobian(f, x))
x_new = x - H_G
print("第1次迭代后的结果为:", x_new)
for i in range(1, iters):
Hessian_T = np.linalg.inv(hessian(f, x_new))
H_G = np.matmul(Hessian_T, jacobian(f, x_new))
x_new = x_new - H_G
print("第"+str(i+1)+"次迭代后的结果为:", x_new)
return x_new
完整版代码此处可以下载。
上一篇: A*算法实现(lisp)
下一篇: 原创:.NET URL重写