欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Java源码解析HashMap简介

程序员文章站 2024-02-25 16:04:15
本文基于jdk1.8进行分析 hashmap是java开发中可以说必然会用到的一个集合。本文就hashmap的源码实现进行分析。 首先看一下源码中类的javadoc注释...

本文基于jdk1.8进行分析

hashmap是java开发中可以说必然会用到的一个集合。本文就hashmap的源码实现进行分析。

首先看一下源码中类的javadoc注释对hashmap的解释。如下图。hashmap是对map接口的基于hash表的实现。这个实现提供了map的所有可选操作,并且允许null值(可以多个)和一个null的key(仅限一个)。hashmap和hashtable十分相似,除了hashmap是非同步的且允许null元素。这个类不保证map里的顺序,更进一步,随着时间的推移,它甚至不保证顺序一直不变。

这个实现为get和put这样的基本操作提供常量级性能,它假设hash函数把元素们比较好的分散到各个桶里。用迭代器遍历集合需要的时间,和hashmap的容量与hashmap里的entry数量的和成正比。所以,如果遍历性能很重要的话,一定不要把初始容量设置的太大,或者把负载因子设置的太小。

一个hashmap有两个影响它的性能的参数,初始容量和负载因子。容量是哈希表中桶的数量,初始容量就是创建哈希表时桶的数量。负载银子是哈希表的容量自动扩容前哈希表能够达到多满。当哈希表中条目的数量超过当前容量和负载因子的乘积后,哈希表会进行重新哈希(也就是,内部数据结构重建),以使哈希表大约拥有2倍数量的桶。

作为一个通常的规则,默认负载银子(0.75) 提供了一个时间和空间的比较好的平衡。更高的负载因子会降低空间消耗但是会增加查找的消耗。当设置初始容量时,哈希表中期望的条目数量和它的负载因子应该考虑在内,以尽可能的减小重新哈希的次数。如果初始容量比条目最大数量除以负载因子还大,那么重新哈希操作就不会发生。

如果许多entry需要存储在哈希表中,用能够容纳entry的足够大的容量来创建哈希表,比让它在需要的时候自动扩容更有效率。请注意,使用多个hash值相等的key肯定会降低任何哈希表的效率。

请注意这个实现不是同步的。如果多个线程同时访问哈希表,并且至少有一个线程会修改哈希表的结构,那么哈希表外部必须进行同步。

/**
 * hash table based implementation of the <tt>map</tt> interface. this
 * implementation provides all of the optional map operations, and permits
 * <tt>null</tt> values and the <tt>null</tt> key. (the <tt>hashmap</tt>
 * class is roughly equivalent to <tt>hashtable</tt>, except that it is
 * unsynchronized and permits nulls.) this class makes no guarantees as to
 * the order of the map; in particular, it does not guarantee that the order
 * will remain constant over time.
 * <p>this implementation provides constant-time performance for the basic
 * operations (<tt>get</tt> and <tt>put</tt>), assuming the hash function
 * disperses the elements properly among the buckets. iteration over
 * collection views requires time proportional to the "capacity" of the
 * <tt>hashmap</tt> instance (the number of buckets) plus its size (the number
 * of key-value mappings). thus, it's very important not to set the initial
 * capacity too high (or the load factor too low) if iteration performance is
 * important.
 * <p>an instance of <tt>hashmap</tt> has two parameters that affect its
 * performance: <i>initial capacity</i> and <i>load factor</i>. the
 * <i>capacity</i> is the number of buckets in the hash table, and the initial
 * capacity is simply the capacity at the time the hash table is created. the
 * <i>load factor</i> is a measure of how full the hash table is allowed to
 * get before its capacity is automatically increased. when the number of
 * entries in the hash table exceeds the product of the load factor and the
 * current capacity, the hash table is <i>rehashed</i> (that is, internal data
 * structures are rebuilt) so that the hash table has approximately twice the
 * number of buckets.
 * <p>as a general rule, the default load factor (.75) offers a good
 * tradeoff between time and space costs. higher values decrease the
 * space overhead but increase the lookup cost (reflected in most of
 * the operations of the <tt>hashmap</tt> class, including
 * <tt>get</tt> and <tt>put</tt>). the expected number of entries in
 * the map and its load factor should be taken into account when
 * setting its initial capacity, so as to minimize the number of
 * rehash operations. if the initial capacity is greater than the
 * maximum number of entries divided by the load factor, no rehash
 * operations will ever occur.
 * <p>if many mappings are to be stored in a <tt>hashmap</tt>
 * instance, creating it with a sufficiently large capacity will allow
 * the mappings to be stored more efficiently than letting it perform
 * automatic rehashing as needed to grow the table. note that using
 * many keys with the same {@code hashcode()} is a sure way to slow
 * down performance of any hash table. to ameliorate impact, when keys
 * are {@link comparable}, this class may use comparison order among
 * keys to help break ties.
 * <p><strong>note that this implementation is not synchronized.</strong>
 * if multiple threads access a hash map concurrently, and at least one of
 * the threads modifies the map structurally, it <i>must</i> be
 * synchronized externally. (a structural modification is any operation
 * that adds or deletes one or more mappings; merely changing the value
 * associated with a key that an instance already contains is not a
 * structural modification.) this is typically accomplished by
 * synchronizing on some object that naturally encapsulates the map.
 * if no such object exists, the map should be "wrapped" using the
 * {@link collections#synchronizedmap collections.synchronizedmap}
 * method. this is best done at creation time, to prevent accidental
 * unsynchronized access to the map:<pre>
 *  map m = collections.synchronizedmap(new hashmap(...));</pre>
 * <p>the iterators returned by all of this class's "collection view methods"
 * are <i>fail-fast</i>: if the map is structurally modified at any time after
 * the iterator is created, in any way except through the iterator's own
 * <tt>remove</tt> method, the iterator will throw a
 * {@link concurrentmodificationexception}. thus, in the face of concurrent
 * modification, the iterator fails quickly and cleanly, rather than risking
 * arbitrary, non-deterministic behavior at an undetermined time in the
 * future.
 * <p>note that the fail-fast behavior of an iterator cannot be guaranteed
 * as it is, generally speaking, impossible to make any hard guarantees in the
 * presence of unsynchronized concurrent modification. fail-fast iterators
 * throw <tt>concurrentmodificationexception</tt> on a best-effort basis.
 * therefore, it would be wrong to write a program that depended on this
 * exception for its correctness: <i>the fail-fast behavior of iterators
 * should be used only to detect bugs.</i>
 * <p>this class is a member of the
 * <a href="{@docroot}/../technotes/guides/collections/index.html" rel="external nofollow" >
 * java collections framework</a>.
 * @param <k> the type of keys maintained by this map
 * @param <v> the type of mapped values
 * @author doug lea
 * @author josh bloch
 * @author arthur van hoff
 * @author neal gafter
 * @see   object#hashcode()
 * @see   collection
 * @see   map
 * @see   treemap
 * @see   hashtable
 * @since  1.2
 **/

this is the end。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对的支持。如果你想了解更多相关内容请查看下面相关链接