欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Java源码解析之可重入锁ReentrantLock

程序员文章站 2024-02-25 08:49:34
本文基于jdk1.8进行分析。 reentrantlock是一个可重入锁,在concurrenthashmap中使用了reentrantlock。 首先看一下源码中对r...

本文基于jdk1.8进行分析。

reentrantlock是一个可重入锁,在concurrenthashmap中使用了reentrantlock。

首先看一下源码中对reentrantlock的介绍。如下图。reentrantlock是一个可重入的排他锁,它和synchronized的方法和代码有着相同的行为和语义,但有更多的功能。reentrantlock是被最后一个成功lock锁并且还没有unlock的线程拥有着。如果锁没有被别的线程拥有,那么一个线程调用lock方法,就会成功获取锁并返回。如果当前线程已经拥有该锁,那么lock方法会立刻返回。这个可以通过isheldbycurrentthread方法和getholdcount方法进行验证。除了这部分介绍外,类前面的javadoc文档很长,就不在这里全部展开。随着后面介绍源码,会一一涉及到。

/**
 * a reentrant mutual exclusion {@link lock} with the same basic
 * behavior and semantics as the implicit monitor lock accessed using
 * {@code synchronized} methods and statements, but with extended
 * capabilities.
 * <p>a {@code reentrantlock} is <em>owned</em> by the thread last
 * successfully locking, but not yet unlocking it. a thread invoking
 * {@code lock} will return, successfully acquiring the lock, when
 * the lock is not owned by another thread. the method will return
 * immediately if the current thread already owns the lock. this can
 * be checked using methods {@link #isheldbycurrentthread}, and {@link
 * #getholdcount}.

首先看一下成员变量,如下图。reentrantlock只有一个成员变量sync,即同步器,这个同步器提供所有的机制。sync是abstractqueuedsynchronizer的子类,同时,sync有2个子类,nonfairsync和fairsync,分别是非公平锁和公平锁。sync,nonfairesync和fairsync的具体实现后面再讲。

  /** synchronizer providing all implementation mechanics **/
  private final sync sync;

下面看一下构造函数。如下图。可以看到,reentrantlock默认是非公平锁,它可以通过参数,指定初始化为公平锁或非公平锁。

  /**
   * creates an instance of {@code reentrantlock}.
   * this is equivalent to using {@code reentrantlock(false)}.
   **/
  public reentrantlock() {
    sync = new nonfairsync();
  }
  /**
   * creates an instance of {@code reentrantlock} with the
   * given fairness policy.
   * @param fair {@code true} if this lock should use a fair ordering policy
   **/
  public reentrantlock(boolean fair) {
    sync = fair ? new fairsync() : new nonfairsync();
  }

下面看一下reentrantlock的主要方法。首先是lock方法。如下图。lock方法的实现很简单,就是调用sync的lock方法。而sync的lock方法是个抽象的,具体实现在nonfairsync和fairsync中。这里我们先不展开讲,而是先读一下lock方法的注释,看看它的作用。lock方法的作用是获取该锁。分为3种情况。

1,如果锁没有被别的线程占有,那么当前线程就可以获取到锁并立刻返回,并把锁计数设置为1。

2,如果当前线程已经占有该锁了,那么就会把锁计数加1,立刻返回。

3,如果锁被另一个线程占有了,那么当前线程就无法再被线程调度,并且开始睡眠,直到获取到锁,在获取到到锁时,会把锁计数设置为1。

lockinterruptibly方法与lock功能类似,但lockinterruptibly方法在等待的过程中,可以响应中断。

  /**
   * acquires the lock.
   * <p>acquires the lock if it is not held by another thread and returns
   * immediately, setting the lock hold count to one.
   * <p>if the current thread already holds the lock then the hold
   * count is incremented by one and the method returns immediately.
   * <p>if the lock is held by another thread then the
   * current thread becomes disabled for thread scheduling
   * purposes and lies dormant until the lock has been acquired,
   * at which time the lock hold count is set to one.
   **/
  public void lock() {
    sync.lock();
  }
  public void lockinterruptibly() throws interruptedexception {
    sync.acquireinterruptibly(1);
  }

下面,详细看一下非公平锁和公平锁中对lock函数的实现。如下图。下图同时列出了公平锁和非公平锁中lock的实现逻辑。从注释和代码逻辑中,都可以看出,非公平锁进行lock时,先尝试立刻闯入(抢占),如果成功,则获取到锁,如果失败,再执行通常的获取锁的行为,即acquire(1)。

    /**
     * 非公平锁中的lock
     * performs lock. try immediate barge, backing up to normal
     * acquire on failure.
     **/
    final void lock() {
      if (compareandsetstate(0, 1))
        setexclusiveownerthread(thread.currentthread());
      else
        acquire(1);
    }
    //公平锁中的lock
    final void lock() {
      acquire(1);
    }

那么,我们首先了解下,非公平锁“尝试立刻闯入”,究竟做了什么。稍后再继续讲解通常的获取锁的行为。下图是立即闯入行为compareandsetstate(0, 1)的实现。从compareandsetstate函数的注释中,可以知道,如果同步状态值与期望值相等,那么就把它的值设置为updated值。否则同步状态值与期望值不相等,则返回false。这个操作和volatile有着相同的内存语义,也就是说,这个操作对其他线程是可见的。compareandsetstate函数注释里描述的功能,是通过unsafe.compareandswapint方法实现的,而unsafe.compareandswapint是一个native方法,是用c++实现的。那么继续追问,c++底层是怎么实现的?c++底层是通过cas指令来实现的。什么是cas指令呢?来自*的解释是,cas,比较和交换,compare and swap,是用用于实现多线程原子同步的指令。它将内存位置的内容和给定值比较,只有在相同的情况下,将该内存的值设置为新的给定值。这个操作是原子操作。那么继续追问,cas指令的原子性,是如何实现的呢?我们都知道指令时cpu来执行的,在多cpu系统中,内存是共享的,内存和多个cpu都挂在总线上,当一个cpu执行cas指令时,它会先将总线lock位点设置为高电平。如果别的cpu也要执行cas执行,它会发现总线lock位点已经是高电平了,则无法执行cas执行。cpu通过lock保证了指令的原子执行。

现在来看一下非公平锁的lock行为,compareandsetstate(0, 1),它期望锁状态为0,即没有别的线程占用,并把新状态设置为1,即标记为占用状态。如果成功,则非公平锁成功抢到锁,之后setexclusiveownerthread,把自己设置为排他线程。非公平锁这小子太坏了。如果抢占失败,则执行与公平锁相同的操作。

  /**
   * atomically sets synchronization state to the given updated
   * value if the current state value equals the expected value.
   * this operation has memory semantics of a {@code volatile} read
   * and write.
   * @param expect the expected value
   * @param update the new value
   * @return {@code true} if successful. false return indicates that the actual
   *     value was not equal to the expected value.
   **/
  protected final boolean compareandsetstate(int expect, int update) {
    // see below for intrinsics setup to support this
    return unsafe.compareandswapint(this, stateoffset, expect, update);
  }
  public final native boolean compareandswapint(object var1, long var2, int var4, int var5);

下面看一下公平锁获取锁时的行为。如下图。这部分的逻辑有些多,请阅读代码中的注释进行理解。

  /**
   * 公平锁的lock
   **/
  final void lock() {
    acquire(1);
  }
  /**
   * acquires in exclusive mode, ignoring interrupts. implemented
   * by invoking at least once {@link #tryacquire},
   * returning on success. otherwise the thread is queued, possibly
   * repeatedly blocking and unblocking, invoking {@link
   * #tryacquire} until success. this method can be used
   * to implement method {@link lock#lock}.
   * @param arg the acquire argument. this value is conveyed to
   *    {@link #tryacquire} but is otherwise uninterpreted and
   *    can represent anything you like.
   **/
  public final void acquire(int arg) {
    /**
     * acquire首先进行tryacquire()操作。如果tryacquire()成功时则获取到锁,即刻返回。
     * 如果tryacquire()false时,会执行acquirequeued(addwaiter(node.exclusive), arg)
     * 操作。如果acquirequeued(addwaiter(node.exclusive), arg)true时,则当前线程中断自己。
     * 如果acquirequeued(addwaiter(node.exclusive), arg)false,则返回。
     * 其中tryacquire()操作在nonfairsync中和fairsync中实现又有所区别。
     **/
    if (!tryacquire(arg) &&
        acquirequeued(addwaiter(node.exclusive), arg))
      selfinterrupt();
  }
  /**
   * nonfairsync中的tryacquire。
   * @param acquires
   * @return
   **/
  protected final boolean tryacquire(int acquires) {
    return nonfairtryacquire(acquires);
  }
  /**
   * performs non-fair trylock. tryacquire is implemented in
   * subclasses, but both need nonfair try for trylock method.
   **/
  final boolean nonfairtryacquire(int acquires) {
    final thread current = thread.currentthread();
    //首先获取当前同步状态值
    int c = getstate();
    if (c == 0) {
      //c为0,表示目前没有线程占用锁。没有线程占用锁时,当前线程尝试抢锁,如果抢锁成功,则返回true。
      if (compareandsetstate(0, acquires)) {
        setexclusiveownerthread(current);
        return true;
      }
    }
    else if (current == getexclusiveownerthread()) {
      //c不等于0时表示锁被线程占用。如果是当前线程占用了,则将锁计数加上acquires,并返回true。
      int nextc = c + acquires;
      if (nextc < 0) // overflow
        throw new error("maximum lock count exceeded");
      setstate(nextc);
      return true;
    }
    //以上情况都不是时,返回false,表示非公平抢锁失败。
    return false;
  }
  /**
   * fair version of tryacquire. don't grant access unless
   * recursive call or no waiters or is first.
   * 这个是公平版本的tryacquire
   **/
  protected final boolean tryacquire(int acquires) {
    final thread current = thread.currentthread();
    int c = getstate();
    if (c == 0) {
      //c=0时表示锁未被占用。这里是先判断队列中前面是否有别的线程。没有别的线程时,才进行cas操作。
      //公平锁之所以公平,正是因为这里。它发现锁未被占用时,首先判断等待队列中是否有别的线程已经在等待了。
      //而非公平锁,发现锁未被占用时,根本不管队列中的排队情况,上来就抢。
      if (!hasqueuedpredecessors() &&
          compareandsetstate(0, acquires)) {
        setexclusiveownerthread(current);
        return true;
      }
    }
    else if (current == getexclusiveownerthread()) {
      int nextc = c + acquires;
      if (nextc < 0)
        throw new error("maximum lock count exceeded");
      setstate(nextc);
      return true;
    }
    return false;
  }
  /**
   * acquires in exclusive uninterruptible mode for thread already in
   * queue. used by condition wait methods as well as acquire.
   * 当抢锁失败时,先执行addwaiter(node.exclusive),将当前线程加入等待队列,再执行该方法。
   * 该方法的作用是中断当前线程,并进行检查,知道当前线程是队列中的第一个线程,并且抢锁成功时,
   * 该方法返回。
   * @param node the node
   * @param arg the acquire argument
   * @return {@code true} if interrupted while waiting
   **/
  final boolean acquirequeued(final node node, int arg) {
    boolean failed = true;
    try {
      boolean interrupted = false;
      for (;;) {
        final node p = node.predecessor();
        if (p == head && tryacquire(arg)) {
          sethead(node);
          p.next = null; // help gc
          failed = false;
          return interrupted;
        }
        if (shouldparkafterfailedacquire(p, node) &&
            parkandcheckinterrupt())
          interrupted = true;
      }
    } finally {
      if (failed)
        cancelacquire(node);
    }
  }

接下来是trylock方法。代码如下。从注释中我们可以理解到,只有当调用trylock时锁没有被别的线程占用,trylock才会获取锁。如果锁没有被另一个线程占用,那么就获取锁,并立刻返回true,并把锁计数设置为1. 甚至在锁被设置为公平排序的情况下,若果锁可用,调用trylock会立刻获取锁,而不管有没有别的线程在等待锁了。从这里我们总结出,不管可重入锁是公平锁还是非公平锁,trylock方法只会是非公平的。

/**
   * acquires the lock only if it is not held by another thread at the time
   * of invocation.
   * <p>acquires the lock if it is not held by another thread and
   * returns immediately with the value {@code true}, setting the
   * lock hold count to one. even when this lock has been set to use a
   * fair ordering policy, a call to {@code trylock()} <em>will</em>
   * immediately acquire the lock if it is available, whether or not
   * other threads are currently waiting for the lock.
   * this "barging" behavior can be useful in certain
   * circumstances, even though it breaks fairness. if you want to honor
   * the fairness setting for this lock, then use
   * {@link #trylock(long, timeunit) trylock(0, timeunit.seconds) }
   * which is almost equivalent (it also detects interruption).
   * <p>if the current thread already holds this lock then the hold
   * count is incremented by one and the method returns {@code true}.
   * <p>if the lock is held by another thread then this method will return
   * immediately with the value {@code false}.
   * @return {@code true} if the lock was free and was acquired by the
   *     current thread, or the lock was already held by the current
   *     thread; and {@code false} otherwise
   **/
  public boolean trylock() {
    return sync.nonfairtryacquire(1);
  }
  public boolean trylock(long timeout, timeunit unit)
      throws interruptedexception {
    return sync.tryacquirenanos(1, unit.tonanos(timeout));
  }

接下来是释放锁的方法unlock。代码如下。unlock方式的实现,是以参数1来调用sync.release方法。而release方法是如何实现的呢?release方法首先会调用tryrelease方法,如果tryrelease成功,则唤醒后继者线程。而tryrelease的实现过程十分清晰,首先获取锁状态,锁状态减去参数(放锁次数),得到新状态。然后判断持有锁的线程是否为当前线程,如果不是当前线程,则抛出illegalmonitorstateexception。然后判断,如果新状态为0,说明放锁成功,则把持有锁的线程设置为null,并返回true。如果新状态不为0,则返回false。从tryrelease的返回值来看,它返回的true或false,指的是否成功的释放了该锁。成功的释放该锁的意思是彻底释放锁,别的线程就可以获取锁了。这里要认识到,即便tryrelease返回false,它也只是说明了锁没有完全释放,本次调用的这个释放次数值,依然是释放成功的。


  /**
   * attempts to release this lock.
   * <p>if the current thread is the holder of this lock then the hold
   * count is decremented. if the hold count is now zero then the lock
   * is released. if the current thread is not the holder of this
   * lock then {@link illegalmonitorstateexception} is thrown.
   * @throws illegalmonitorstateexception if the current thread does not
   *     hold this lock
   **/
  public void unlock() {
    sync.release(1);
  }
  /**
   * releases in exclusive mode. implemented by unblocking one or
   * more threads if {@link #tryrelease} returns true.
   * this method can be used to implement method {@link lock#unlock}.
   * @param arg the release argument. this value is conveyed to
   *    {@link #tryrelease} but is otherwise uninterpreted and
   *    can represent anything you like.
   * @return the value returned from {@link #tryrelease}
   **/
  public final boolean release(int arg) {
    if (tryrelease(arg)) {
      node h = head;
      if (h != null && h.waitstatus != 0)
        unparksuccessor(h);
      return true;
    }
    return false;
  }
  protected final boolean tryrelease(int releases) {
      int c = getstate() - releases;
      if (thread.currentthread() != getexclusiveownerthread())
        throw new illegalmonitorstateexception();
      boolean free = false;
      if (c == 0) {
        free = true;
        setexclusiveownerthread(null);
      }
      setstate(c);
      return free;
    }
  /**
   * wakes up node's successor, if one exists.
   * @param node the node
   **/
  private void unparksuccessor(node node) {
    /**
     * if status is negative (i.e., possibly needing signal) try
     * to clear in anticipation of signalling. it is ok if this
     * fails or if status is changed by waiting thread.
     **/
    int ws = node.waitstatus;
    if (ws < 0)
      compareandsetwaitstatus(node, ws, 0);
    /**
     * thread to unpark is held in successor, which is normally
     * just the next node. but if cancelled or apparently null,
     * traverse backwards from tail to find the actual
     * non-cancelled successor.
     **/
    node s = node.next;
    if (s == null || s.waitstatus > 0) {
      s = null;
      for (node t = tail; t != null && t != node; t = t.prev)
        if (t.waitstatus <= 0)
          s = t;
    }
    if (s != null)
      locksupport.unpark(s.thread);
  }

接下来是newcondition方法。关于condition这里不展开介绍,只是了解下该方法的作用。如下图。该方法返回一个和这个锁实例一起使用的condition实例。返回的condition实例支持和object的监控方法例如wait-notify和notifyall相同的用法。

  • 1,如果没有获取锁,调用condition的await,signal,signalall方法的任何一个时,会抛出illegalmonitorstateexception异常。
  • 2,调用condition的await方法时,锁也会释放,在await返回之前,锁会被重新获取,并且锁计数会恢复到调用await方法时的值。
  • 3,如果一个线程在等待的过程中被中断了,那么等待就会结束,并抛出interruptedexception异常,线程的中断标志位会被清理。
  • 4,等待的线程以fifo的顺序被唤醒。
  • 5,从await方法返回的线程们的获取到锁的顺序,和线程最开始获取锁的顺序相同,这是未指定情况下的默认实现。但是,公平锁更钟爱那些已经等待了最长时间的线程。
  /**
   * returns a {@link condition} instance for use with this
   * {@link lock} instance.
   * <p>the returned {@link condition} instance supports the same
   * usages as do the {@link object} monitor methods ({@link
   * object#wait() wait}, {@link object#notify notify}, and {@link
   * object#notifyall notifyall}) when used with the built-in
   * monitor lock.
   * <ul>
   * <li>if this lock is not held when any of the {@link condition}
   * {@linkplain condition#await() waiting} or {@linkplain
   * condition#signal signalling} methods are called, then an {@link
   * illegalmonitorstateexception} is thrown.
   * <li>when the condition {@linkplain condition#await() waiting}
   * methods are called the lock is released and, before they
   * return, the lock is reacquired and the lock hold count restored
   * to what it was when the method was called.
   * <li>if a thread is {@linkplain thread#interrupt interrupted}
   * while waiting then the wait will terminate, an {@link
   * interruptedexception} will be thrown, and the thread's
   * interrupted status will be cleared.
   * <li> waiting threads are signalled in fifo order.
   * <li>the ordering of lock reacquisition for threads returning
   * from waiting methods is the same as for threads initially
   * acquiring the lock, which is in the default case not specified,
   * but for <em>fair</em> locks favors those threads that have been
   * waiting the longest.
   * </ul>
   * @return the condition object
   **/
  public condition newcondition() {
    return sync.newcondition();
  }

可重入锁还有一些其他的方法,这里就不一一介绍了。this is the end.

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对的支持。如果你想了解更多相关内容请查看下面相关链接