欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

【题解】Willem, Chtholly and Seniorious Codeforces 896C ODT

程序员文章站 2024-02-24 11:20:40
...

Prelude

ODT这个东西真是太好用了,以后写暴力骗分可以用,写在这里mark一下。
题目链接:ヽ(✿゚▽゚)ノ


Solution

先把原题解贴在这里:(ノ*・ω・)ノ
简单地说,因为数据是全部随机的,所以一定会有特别多的区间set,就会有很多数字相同,那么我们暴力把相同的数字合并成一个点,合并完之后数组就变得很短,然后对于询问暴力做就可以了。
具体复杂度是什么我也不会证明qwq,所以就把由乃的题解贴上来了qwq,感觉很靠谱的样子。
题解中给的是用STL的set维护缩点后的数组,我感觉不是很好写,就直接用数组维护了。
ddd还写过链表维护的,不过感觉都差不多,反正复杂度都是对的,肯定能过qwq。


Code

#include <bits/stdc++.h>
#define dprint printf

using namespace std;
typedef long long ll;
typedef pair<ll,int> pli;
const int MAXN = 100010;
int _w;

void noprint(...) {}

int fpow( int a, int b, int mod ) {
    int c = 1;
    while(b) {
        if( b & 1 ) c = int(1LL * c * a % mod);
        a = int(1LL * a * a % mod);
        b >>= 1;
    }
    return c;
}

int inter( int l1, int r1, int l2, int r2 ) {
    int l = max(l1, l2);
    int r = min(r1, r2);
    return max(r-l+1, 0);
}

int n, m, seed, vmax;
ll a[MAXN];

int rnd() {
    const int MOD = 1e9+7;
    
    int ret = seed;
    seed = int((1LL * seed * 7 + 13) % MOD);
    return ret;
}

pli b[MAXN];
int sz;
void prelude() {
    sz = 1;
    b[sz-1].first = a[1], b[sz-1].second = 0;
    for( int i = 1; i <= n; ++i ) {
        if( b[sz-1].first == a[i] ) {
            ++b[sz-1].second;
        } else {
            b[sz].first = a[i], b[sz].second = 1, ++sz;
        }
    }
}

pli c[MAXN];
int csz;

void append( ll x, int cnt ) {
    if( csz && c[csz-1].first == x )
        c[csz-1].second += cnt;
    else
        c[csz].first = x, c[csz].second = cnt, ++csz;
}

void solve1( int l, int r, int x ) {
    int L = 0, R = 0;
    csz = 0;
    for( int i = 0; i < sz; ++i ) {
        L = R+1;
        R = L + b[i].second - 1;
        ll num = b[i].first;
        int cntl = inter(L, l-1, L, R);
        int cnt = inter(L, R, l, r);
        int cntr = inter(r+1, R, L, R);
        if( cntl ) append(num, cntl);
        if( cnt ) append(num+x, cnt);
        if( cntr ) append(num, cntr);
    }
    sz = csz;
    for( int i = 0; i < sz; ++i )
        b[i] = c[i];
}

void solve2( int l, int r, int x ) {
    int L = 0, R = 0;
    csz = 0;
    for( int i = 0; i < sz; ++i ) {
        L = R+1;
        R = L + b[i].second - 1;
        ll num = b[i].first;
        int cntl = inter(L, l-1, L, R);
        int cnt = inter(L, R, l, r);
        int cntr = inter(r+1, R, L, R);
        if( cntl ) append(num, cntl);
        if( cnt ) append(x, cnt);
        if( cntr ) append(num, cntr);
    }
    sz = csz;
    for( int i = 0; i < sz; ++i )
        b[i] = c[i];
}

void solve3( int l, int r, int x ) {
    int L = 0, R = 0;
    csz = 0;
    for( int i = 0; i < sz; ++i ) {
        L = R+1;
        R = L + b[i].second - 1;
        int cnt = inter(L, R, l, r);
        if( cnt ) c[csz++] = pli( b[i].first, cnt );
    }
    sort(c, c+csz);
    L = R = 0;
    for( int i = 0; i < csz; ++i ) {
        L = R+1;
        R = L + c[i].second - 1;
        if( x >= L && x <= R )
            return (void)printf( "%lld\n", c[i].first );
    }
    return assert(0);
}

void solve4( int l, int r, int x, int y ) {
    int L = 0, R = 0, ans = 0;
    for( int i = 0; i < sz; ++i ) {
        L = R+1;
        R = L + b[i].second - 1;
        int cnt = inter(L, R, l, r);
        if( cnt ) ans = int((ans + 1LL * cnt * fpow( int(b[i].first % y), x, y )) % y);
    }
    printf( "%d\n", ans );
}

void output_array() {
    for( int i = 0; i < sz; ++i ) {
        int t = b[i].second;
        while( t-- )
            dprint( "%lld ", b[i].first );
    }
    dprint("\n");
}

int main() {
    _w = scanf( "%d%d%d%d", &n, &m, &seed, &vmax );
    // dprint("Init:\n");
    for( int i = 1; i <= n; ++i ) {
        a[i] = rnd() % vmax + 1;
        // dprint("%lld ", a[i]);
    }
    // dprint("\n");
    prelude();
    for( int i = 1; i <= m; ++i ) {
        int op, l, r, x, y;
        op = rnd() % 4 + 1;
        l = rnd() % n + 1;
        r = rnd() % n + 1;
        if( l > r ) swap(l, r);
        if( op == 3 )
            x = rnd() % (r-l+1) + 1;
        else
            x = rnd() % vmax + 1;
        if( op == 4 )
            y = rnd() % vmax + 1;
        if( op == 1 ) solve1(l, r, x);
        else if( op == 2 ) solve2(l, r, x);
        else if( op == 3 ) solve3(l, r, x);
        else if( op == 4 ) solve4(l, r, x, y);
        // dprint("op = %d, l = %d, r = %d, x = %d, y = %d\n", op, l, r, x, y);
        // output_array();
    }
    return 0;
}