Codeforces:896C-Willem, Chtholly and Seniorious(odt模板)
题目链接:http://codeforces.com/contest/896/problem/C
C. Willem, Chtholly and Seniorious
time limit per test 2 seconds
memory limit per test 256 megabytes
Problem Description
— Willem…
— What’s the matter?
— It seems that there’s something wrong with Seniorious…
— I’ll have a look…
Seniorious is made by linking special talismans in particular order.
After over 500 years, the carillon is now in bad condition, so Willem decides to examine it thoroughly.
Seniorious has n pieces of talisman. Willem puts them in a line, the i-th of which is an integer ai.
In order to maintain it, Willem needs to perform m operations.
There are four types of operations:
1 l r x: For each i such that l ≤ i ≤ r, assign ai + x to ai.
2 l r x: For each i such that l ≤ i ≤ r, assign x to ai.
3 l r x: Print the x-th smallest number in the index range [l, r], i.e. the element at the x-th position if all the elements ai such that l ≤ i ≤ r are taken and sorted into an array of non-decreasing integers. It's guaranteed that 1 ≤ x ≤ r - l + 1.
4 l r x y: Print the sum of the x-th power of ai such that l ≤ i ≤ r, modulo y, i.e. .
Input
The only line contains four integers n, m, seed, vmax (1 ≤ n, m ≤ 105, 0 ≤ seed < 109 + 7, 1 ≤ vmax ≤ 109).
The initial values and operations are generated using following pseudo code:
def rnd():
ret = seed
seed = (seed * 7 + 13) mod 1000000007
return ret
for i = 1 to n:
a[i] = (rnd() mod vmax) + 1
for i = 1 to m:
op = (rnd() mod 4) + 1
l = (rnd() mod n) + 1
r = (rnd() mod n) + 1
if (l > r):
swap(l, r)
if (op == 3):
x = (rnd() mod (r - l + 1)) + 1
else:
x = (rnd() mod vmax) + 1
if (op == 4):
y = (rnd() mod vmax) + 1
Here op is the type of the operation mentioned in the legend.
Output
For each operation of types 3 or 4, output a line containing the answer.
Examples
Input
10 10 7 9
Output
2
1
0
3
Input
10 10 9 9
Output
1
1
3
3
Note
In the first example, the initial array is {8, 9, 7, 2, 3, 1, 5, 6, 4, 8}.
The operations are:
2 6 7 9
1 3 10 8
4 4 6 2 4
1 4 5 8
2 1 7 1
4 7 9 4 4
1 2 7 9
4 5 8 1 1
2 5 7 5
4 3 10 8 5
解题心得:
- 第一次写odt,发现这个东西有点鸡肋,还要看运气,只有在面对随机数据的时候才能降低复杂度。odt主要用于解决区间的覆盖问题,将某一段区间全改为某一值,这是在使用线段树无法维护值的时候可以用odt。
- 参考大佬的博客:https://www.cnblogs.com/yzhang-rp-inf/p/9443659.html
#include <bits/stdc++.h>
#define sit set<node>::iterator
using namespace std;
typedef long long ll;
const int MOD = 1e9+7;
ll n, m, seed, vmax;
struct node {
ll l, r;
mutable ll va;
node(ll L, ll R=-1, ll Va=0): l(L), r(R), va(Va){}
bool operator <(const node& o) const {//规定在set中的排序键值
return l < o.l;
}
};
set <node> se;
ll rd()
{
ll ret = seed;
seed = (seed * 7 + 13) % MOD;
return ret;
}
sit split(ll pos) {//odt的精华
sit it = se.lower_bound(node(pos));
if(it!=se.end() && it->l == pos) {
return it;
}
--it;
ll l = it->l, r = it->r, va = it->va;
se.erase(it);
se.insert(node(l, pos-1, va));
return se.insert(node(pos, r, va)).first;
}
ll pown(ll va, ll cnt, ll mod) {//快速幂
ll ans = 1;
va %= mod;
while(cnt) {
if(cnt&1) ans *= va;
va *= va;
ans %= mod;
va %= mod;
cnt >>= 1;
}
return ans;
}
ll sum(ll l, ll r, ll x, ll y) {
sit itl = split(l), itr = split(r+1);
ll res = 0;
for(;itl!=itr;itl++) {
res = (res + ((ll)(itl->r - itl->l + 1ll) % y * pown(itl->va, x, y))% y) % y;//注意长度
}
return res;
}
void add(ll l, ll r, ll va) {
sit itl = split(l), itr = split(r+1);
for(;itl!=itr;itl++) {
itl->va += va;
}
}
void color(ll l, ll r, ll va) {
sit itl = split(l), itr = split(r+1);
se.erase(itl, itr);//这里本地会发生段错误,其实真的不明白为什么交题可以过。明明itl指向的地方可能被删除
se.insert(node(l, r, va));
}
ll kth(ll l, ll r, ll k) {
sit itl = split(l), itr = split(r+1);
vector <pair<ll, ll> > ve;
for(;itl!=itr;itl++) {
ve.push_back(pair<ll, ll>(itl->va, itl->r - itl->l + 1));
}
sort(ve.begin(), ve.end());//排序暴力找
for(int i=0;i<ve.size();i++) {
k -= ve[i].second;
if(k <= 0)
return ve[i].first;
}
}
int main() {
//freopen("1.in", "r", stdin);
scanf("%lld%lld%lld%lld", &n, &m, &seed, &vmax);
for(int i=1;i<=n;i++) {
ll temp = (rd() % vmax) + 1;
se.insert(node(i, i, temp));
}
se.insert(node(n+1, n+1, 0));//防止越界
for(int i=1;i<=m;i++) {
int op = int(rd() % 4) + 1;
int l = int(rd() % n) + 1;
int r = int(rd() % n) + 1;
if (l > r)
swap(l,r);
int x, y;
if (op == 3)
x = int(rd() % (r-l+1)) + 1;
else
x = int(rd() % vmax) +1;
if (op == 4)
y = int(rd() % vmax) + 1;
if (op == 1)
add(l, r, ll(x));
else if (op == 2)
color(l, r, ll(x));
else if (op == 3)
cout<<kth(l,r,x)<<endl;
else
cout<<sum(l,r,x,y)<<endl;
}
}
上一篇: mybatis实现查询某一时间段的数据
下一篇: linux下删除某一时间段的文件
推荐阅读
-
Codeforces:896C-Willem, Chtholly and Seniorious(odt模板)
-
CodeForces - 897E Willem, Chtholly and Seniorious(珂朵莉树)
-
cf896C. Willem, Chtholly and Seniorious(ODT)
-
cf896C. Willem, Chtholly and Seniorious(ODT)
-
珂朵莉树模板 Codeforces Round #449 (Div. 1) C. Willem, Chtholly and Seniorious
-
Codeforces Round #449 (Div. 1) C. Willem, Chtholly and Seniorious 结论题