欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

STM32F103C6 USART1串口功能

程序员文章站 2024-02-22 11:55:16
...

基于STM32F103C6工程实现串口USART1功能,USART1串口TX为PA9,RX为PA10,配置一个USART1串口分为以下几步:

  1. 初时化IO配置

  2. 初时化USART NVIC配置

  3. 初时化USART参数

  4. 实现中断函数USART1_IRQHandler

  5. 实现串口发送函数USART1_Send_Data

  6. 主函数调用相关配置函数

Step 1: 初时化IO配置,初时化USART NVIC配置,初时化USART参数封装成一个函数

          Usart1_Init

#include "stm32f10x_usart.h"
#include "stm32f10x.h"
#include <stdio.h>

uint8_t rxBuf[40];
uint8_t rxLen;

/**
  * @brief  USART1串口初时化
  *        
  *         
  * @param  uint32_t baudrate[in]:设置波特率
  * @retval None
  */
void Usart1_Init(uint32_t baudrate)
{
	GPIO_InitTypeDef GPIO_InitStructure;
	USART_InitTypeDef USART_InitStructure;
	NVIC_InitTypeDef NVIC_InitStructure;
	
	/* 初时化串口前,先将相应的时钟打开 */
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1 | RCC_APB2Periph_GPIOA,ENABLE);
	
	/* 初时化USART1 TX PA9引脚设为复用推挽输出 */
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;    
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA,&GPIO_InitStructure);
	
	/* 初时化USART1 RX PA10引脚为浮空输入 */
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
	GPIO_Init(GPIOA,&GPIO_InitStructure);
	
	
	/* USART1 NVIC初时化 */
	NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); /*!< 设置NVIC中断分组2:2位抢占优先级,2位响应优先级   0-3; */
	NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn; /*!< USART1中断通道USART1_IRQn  */
	NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 3; /*!< 抢占优先级3 */
	NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3;    /*!< 子优先级3 */
	NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;  /*!<  IRQ使能通道 */
	NVIC_Init(&NVIC_InitStructure);   /*!< 初时化NVIC寄存器  */
	
	/* USART初时化设置 */
	USART_InitStructure.USART_BaudRate = baudrate;   /*!<  设置波特率 */
	USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
	USART_InitStructure.USART_WordLength = USART_WordLength_8b; /*!< 8位数据*/
	USART_InitStructure.USART_StopBits = USART_StopBits_1;   /*!< 1位停止位 */
	USART_InitStructure.USART_Parity = USART_Parity_No;   /*!< 无校验位 */
	USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;  /*!< 收发模式*/
	USART_Init(USART1,&USART_InitStructure);  /*!< 初时化串口1 */
	
	/* 开启串口1接收中断 */
	USART_ITConfig(USART1,USART_IT_RXNE,ENABLE);
	/* 使能串口1 */
	USART_Cmd(USART1,ENABLE);

}

Step 2: 实现中断函数USART1_IRQHandler

/**
  * @brief  USART1串口中断函数
  *        
  *         
  * @param  None
  * @retval None
  */
void USART1_IRQHandler(void) 
{
	/* 暂存接收结果 */
	uint8_t result;
  /* @note
  *   - PE (Parity error), FE (Framing error), NE (Noise error), ORE (OverRun 
  *     error) and IDLE (Idle line detected) pending bits are cleared by 
  *     software sequence: a read operation to USART_SR register 
  *     (USART_GetITStatus()) followed by a read operation to USART_DR register 
  *     (USART_ReceiveData()).
  *   - RXNE pending bit can be also cleared by a read to the USART_DR register 
  *     (USART_ReceiveData()).
  */
	/* 检查是否为USART1接收中断 */
	if(USART_GetITStatus(USART1,USART_IT_RXNE) != RESET)
	{
		 result = USART_ReceiveData(USART1);   
                 if(rxLen < 20)
		 {
			 rxBuf[rxLen] = result;
			 rxLen++;
		 }			 
	}
	else
        {
            USART_ReceiveData(USART1);
	}
	
	
	

}

Step 3:实现串口发送函数USART1_Send_Data


/**
* @brief  USART1串口发送函数
  *        
  *         
	* @param   uint8_t *buf[in]:待发送的数据buffer
* @param   uint16_t len:发送的数据长度
  * @retval None
  */
void USART1_Send_Data(uint8_t *buf,uint16_t len)
{
	for(uint16_t i = 0; i<len; i++)
	{
  /*- TC pending bit can be also cleared by software sequence: a read 
  *     operation to USART_SR register (USART_GetITStatus()) followed by a write 
  *     operation to USART_DR register (USART_SendData()).
  *   - TXE pending bit is cleared only by a write to the USART_DR register 
  *     (USART_SendData()).
  */
		while(USART_GetFlagStatus(USART1,USART_FLAG_TC); /*!<发送是否完成*/
		USART_SendData(USART1,buf[i]);
	}	
}

 Step 4:主函数调用相关配置函数


/**
  * @brief  主函数,程序的入口
  *        
  *         
  * @param  None
  * @retval int:不用理会,对于嵌入式系统,永远都不会返回
  */
int main(void)
{
	Usart1_Init(9600);
	for(;;)
	{
		if(rxLen >= 20)
		{
			USART1_Send_Data(rxBuf,20);
			rxLen = 0;
		}
		
	}
}

串口功能完成,那么如何实现printf函数功能呢,重定义fputc函数

//重定义fputc函数 
int fputc(int ch, FILE *f)
{      
	while((USART1->SR&0X40)==0);
	USART1->DR = (u8) ch;      
		
	return ch;
}

此时还需要勾选Use MicroLib选项

STM32F103C6 USART1串口功能

另一种方法不需要勾选Use MicroLib选项,如下:


/* 加入以下代码,支持printf函数,而不需要选择use MicroLIB */
#ifdef DEBUG
#pragma import(__use_no_semihosting)             
//标准库需要的支持函数                 
struct __FILE 
{ 
	int handle; 

}; 

FILE __stdout;       
//定义_sys_exit()以避免使用半主机模式    
void _sys_exit(int x) 
{ 
	x = x; 
}  
//重定义fputc函数 
int fputc(int ch, FILE *f)
{      
	while((USART1->SR&0X40)==0);
	USART1->DR = (u8) ch;      
		
	return ch;
}
#endif 

断言功能实现,首先得定义宏USE_FULL_ASSERT打开断言功能,然后实现函

数assert_failed

#if USE_FULL_ASSERT
void assert_failed(uint8_t* file, uint32_t line)
{
	printf("\r\nfile path is %s,error line is %d\r\n",file,line);
	while(1);
}
#endif