欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Java多线程并发编程(互斥锁Reentrant Lock)

程序员文章站 2024-02-21 20:23:46
java 中的锁通常分为两种: 通过关键字 synchronized 获取的锁,我们称为同步锁,上一篇有介绍到:java 多线程并发编程 synchronized 关键字...

java 中的锁通常分为两种:

通过关键字 synchronized 获取的锁,我们称为同步锁,上一篇有介绍到:java 多线程并发编程 synchronized 关键字
java.util.concurrent(juc)包里的锁,如通过继承接口 lock 而实现的 reentrantlock(互斥锁),继承 readwritelock 实现的 reentrantreadwritelock(读写锁)。
本篇主要介绍 reentrantlock(互斥锁)。

reentrantlock(互斥锁)

reentrantlock 互斥锁,在同一时间只能被一个线程所占有,在被持有后并未释放之前,其他线程若想获得该锁只能等待或放弃。

reentrantlock 互斥锁是可重入锁,即某一线程可多次获得该锁。

公平锁 and 非公平锁

public reentrantlock() {
    sync = new nonfairsync();
  }

  public reentrantlock(boolean fair) {
    sync = fair ? new fairsync() : new nonfairsync();
  }

由 reentrantlock 的构造函数可见,在实例化 reentrantlock 的时候我们可以选择实例化一个公平锁或非公平锁,而默认会构造一个非公平锁。

公平锁与非公平锁区别在于竞争锁时的有序与否。公平锁可确保有序性(fifo 队列),非公平锁不能确保有序性(即使也有 fifo 队列)。

然而,公平是要付出代价的,公平锁比非公平锁要耗性能,所以在非必须确保公平的条件下,一般使用非公平锁可提高吞吐率。所以 reentrantlock 默认的构造函数也是“不公平”的。

一般使用

demo1:

public class test {

  private static class counter {

    private reentrantlock mreentrantlock = new reentrantlock();

    public void count() {
      mreentrantlock.lock();
      try {
        for (int i = 0; i < 6; i++) {
          system.out.println(thread.currentthread().getname() + ", i = " + i);
        }
      } finally {
	      // 必须在 finally 释放锁
        mreentrantlock.unlock();
      }
    }
  }

  private static class mythread extends thread {

    private counter mcounter;

    public mythread(counter counter) {
      mcounter = counter;
    }

    @override
    public void run() {
      super.run();
      mcounter.count();
    }
  }

  public static void main(string[] var0) {
    counter counter = new counter();
    // 注:mythread1 和 mythread2 是调用同一个对象 counter
    mythread mythread1 = new mythread(counter);
    mythread mythread2 = new mythread(counter);
    mythread1.start();
    mythread2.start();
  }
}

demo1 输出:

thread-0, i = 0
thread-0, i = 1
thread-0, i = 2
thread-0, i = 3
thread-0, i = 4
thread-0, i = 5
thread-1, i = 0
thread-1, i = 1
thread-1, i = 2
thread-1, i = 3
thread-1, i = 4
thread-1, i = 5

demo1 仅使用了 reentrantlock 的 lock 和 unlock 来提现一般锁的特性,确保线程的有序执行。此种场景 synchronized 也适用。

锁的作用域

demo2:

public class test {

  private static class counter {

    private reentrantlock mreentrantlock = new reentrantlock();

    public void count() {
      for (int i = 0; i < 6; i++) {
        mreentrantlock.lock();
        // 模拟耗时,突出线程是否阻塞
        try{
          thread.sleep(100);
          system.out.println(thread.currentthread().getname() + ", i = " + i);
        } catch (interruptedexception e) {
          e.printstacktrace();
        } finally {
	        // 必须在 finally 释放锁
          mreentrantlock.unlock();
        }
      }
    }

    public void dootherthing(){
      for (int i = 0; i < 6; i++) {
        // 模拟耗时,突出线程是否阻塞
        try {
          thread.sleep(100);
        } catch (interruptedexception e) {
          e.printstacktrace();
        }
        system.out.println(thread.currentthread().getname() + " dootherthing, i = " + i);
      }
    }
  }
  
  public static void main(string[] var0) {
    final counter counter = new counter();
    new thread(new runnable() {
      @override
      public void run() {
        counter.count();
      }
    }).start();
    new thread(new runnable() {
      @override
      public void run() {
        counter.dootherthing();
      }
    }).start();
  }
}

demo2 输出:

thread-0, i = 0
thread-1 dootherthing, i = 0
thread-0, i = 1
thread-1 dootherthing, i = 1
thread-0, i = 2
thread-1 dootherthing, i = 2
thread-0, i = 3
thread-1 dootherthing, i = 3
thread-0, i = 4
thread-1 dootherthing, i = 4
thread-0, i = 5
thread-1 dootherthing, i = 5

demo3:

public class test {

  private static class counter {

    private reentrantlock mreentrantlock = new reentrantlock();

    public void count() {
      for (int i = 0; i < 6; i++) {
        mreentrantlock.lock();
        // 模拟耗时,突出线程是否阻塞
        try{
          thread.sleep(100);
          system.out.println(thread.currentthread().getname() + ", i = " + i);
        } catch (interruptedexception e) {
          e.printstacktrace();
        } finally {
          // 必须在 finally 释放锁
          mreentrantlock.unlock();
        }
      }
    }

    public void dootherthing(){
      mreentrantlock.lock();
      try{
        for (int i = 0; i < 6; i++) {
          // 模拟耗时,突出线程是否阻塞
          try {
            thread.sleep(100);
          } catch (interruptedexception e) {
            e.printstacktrace();
          }
          system.out.println(thread.currentthread().getname() + " dootherthing, i = " + i);
        }
      }finally {
        mreentrantlock.unlock();
      }

    }
  }

  public static void main(string[] var0) {
    final counter counter = new counter();
    new thread(new runnable() {
      @override
      public void run() {
        counter.count();
      }
    }).start();
    new thread(new runnable() {
      @override
      public void run() {
        counter.dootherthing();
      }
    }).start();
  }
}

demo3 输出:

thread-0, i = 0
thread-0, i = 1
thread-0, i = 2
thread-0, i = 3
thread-0, i = 4
thread-0, i = 5
thread-1 dootherthing, i = 0
thread-1 dootherthing, i = 1
thread-1 dootherthing, i = 2
thread-1 dootherthing, i = 3
thread-1 dootherthing, i = 4
thread-1 dootherthing, i = 5

结合 demo2 和 demo3 输出可见,锁的作用域在于 mreentrantlock,因为所来自于 mreentrantlock。

可终止等待

demo4:

public class test {

  static final int timeout = 300;

  private static class counter {

    private reentrantlock mreentrantlock = new reentrantlock();

    public void count() {
      try{
        //lock() 不可中断
        mreentrantlock.lock();
        // 模拟耗时,突出线程是否阻塞
        for (int i = 0; i < 6; i++) {
          long starttime = system.currenttimemillis();
          while (true) {
            if (system.currenttimemillis() - starttime > 100)
              break;
          }
          system.out.println(thread.currentthread().getname() + ", i = " + i);
        }
      } finally {
        // 必须在 finally 释放锁
        mreentrantlock.unlock();
      }
    }

    public void dootherthing(){
      try{
        //lockinterruptibly() 可中断,若线程没有中断,则获取锁
        mreentrantlock.lockinterruptibly();
        for (int i = 0; i < 6; i++) {
          // 模拟耗时,突出线程是否阻塞
          long starttime = system.currenttimemillis();
          while (true) {
            if (system.currenttimemillis() - starttime > 100)
              break;
          }
          system.out.println(thread.currentthread().getname() + " dootherthing, i = " + i);
        }
      } catch (interruptedexception e) {
        system.out.println(thread.currentthread().getname() + " 中断 ");
      }finally {
        // 若当前线程持有锁,则释放
        if(mreentrantlock.isheldbycurrentthread()){
          mreentrantlock.unlock();
        }
      }
    }
  }

  public static void main(string[] var0) {
    final counter counter = new counter();
    new thread(new runnable() {
      @override
      public void run() {
        counter.count();
      }
    }).start();
    thread thread2 = new thread(new runnable() {
      @override
      public void run() {
        counter.dootherthing();
      }
    });
    thread2.start();
    long start = system.currenttimemillis();
    while (true){
      if (system.currenttimemillis() - start > timeout) {
        // 若线程还在运行,尝试中断
        if(thread2.isalive()){
          system.out.println(" 不等了,尝试中断 ");
          thread2.interrupt();
        }
        break;
      }
    }
  }
}

demo4 输出:

thread-0, i = 0
thread-0, i = 1
thread-0, i = 2
不等了,尝试中断
thread-1 中断
thread-0, i = 3
thread-0, i = 4
thread-0, i = 5

线程 thread2 等待 300ms 后 timeout,中断等待成功。

若把 timeout 改成 3000ms,输出结果:(正常运行)

thread-0, i = 0
thread-0, i = 1
thread-0, i = 2
thread-0, i = 3
thread-0, i = 4
thread-0, i = 5
thread-1 dootherthing, i = 0
thread-1 dootherthing, i = 1
thread-1 dootherthing, i = 2
thread-1 dootherthing, i = 3
thread-1 dootherthing, i = 4
thread-1 dootherthing, i = 5

定时锁

demo5:

public class test {

  static final int timeout = 3000;

  private static class counter {

    private reentrantlock mreentrantlock = new reentrantlock();

    public void count() {
      try{
        //lock() 不可中断
        mreentrantlock.lock();
        // 模拟耗时,突出线程是否阻塞
        for (int i = 0; i < 6; i++) {
          long starttime = system.currenttimemillis();
          while (true) {
            if (system.currenttimemillis() - starttime > 100)
              break;
          }
          system.out.println(thread.currentthread().getname() + ", i = " + i);
        }
      } finally {
        // 必须在 finally 释放锁
        mreentrantlock.unlock();
      }
    }

    public void dootherthing(){
      try{
        //trylock(long timeout, timeunit unit) 尝试获得锁
        boolean islock = mreentrantlock.trylock(300, timeunit.milliseconds);
        system.out.println(thread.currentthread().getname() + " islock:" + islock);
        if(islock){
          for (int i = 0; i < 6; i++) {
            // 模拟耗时,突出线程是否阻塞
            long starttime = system.currenttimemillis();
            while (true) {
              if (system.currenttimemillis() - starttime > 100)
                break;
            }
            system.out.println(thread.currentthread().getname() + " dootherthing, i = " + i);
          }
        }else{
          system.out.println(thread.currentthread().getname() + " timeout");
        }
      } catch (interruptedexception e) {
        system.out.println(thread.currentthread().getname() + " 中断 ");
      }finally {
        // 若当前线程持有锁,则释放
        if(mreentrantlock.isheldbycurrentthread()){
          mreentrantlock.unlock();
        }
      }
    }
  }

  public static void main(string[] var0) {
    final counter counter = new counter();
    new thread(new runnable() {
      @override
      public void run() {
        counter.count();
      }
    }).start();
    thread thread2 = new thread(new runnable() {
      @override
      public void run() {
        counter.dootherthing();
      }
    });
    thread2.start();
  }
}

demo5 输出:

thread-0, i = 0
thread-0, i = 1
thread-0, i = 2
thread-1 islock:false
thread-1 timeout
thread-0, i = 3
thread-0, i = 4
thread-0, i = 5

trylock() 尝试获得锁,trylock(long timeout, timeunit unit) 在给定的 timeout 时间内尝试获得锁,若超时,则不带锁往下走,所以必须加以判断。

reentrantlock or synchronized

reentrantlock 、synchronized 之间如何选择?

reentrantlock 在性能上 比 synchronized 更胜一筹。

reentrantlock 需格外小心,因为需要显式释放锁,lock() 后记得 unlock(),而且必须在 finally 里面,否则容易造成死锁。
synchronized 隐式自动释放锁,使用方便。

reentrantlock 扩展性好,可中断锁,定时锁,*控制。
synchronized 一但进入阻塞等待,则无法中断等待。