欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Cascade Classifier

程序员文章站 2024-02-20 11:17:22
...

Cascade Classifier

一.基础概念

1.Haar和LBP特征

参考博客:

https://blog.csdn.net/liudongdong19/article/details/81008160

2.主要函数

  • § CascadeClassifier() [1/2]

    cv::CascadeClassifier::CascadeClassifier ( )
    Python:
    = cv.CascadeClassifier( )
    = cv.CascadeClassifier( filename )

    § CascadeClassifier() [2/2]

    cv::CascadeClassifier::CascadeClassifier ( const String & filename )
    Python:
    = cv.CascadeClassifier( )
    = cv.CascadeClassifier( filename )

    Loads a classifier from a file.

    • Parameters

      filenameName of the file from which the classifier is loaded.

  • § load()

    bool cv::CascadeClassifier::load ( const String & filename )
    Python:
    retval = cv.CascadeClassifier.load( filename )
  • § detectMultiScale() [1/3]

    void cv::CascadeClassifier::detectMultiScale ( InputArray image,
    std::vector< Rect > & objects,
    double scaleFactor = 1.1,
    int minNeighbors = 3,
    int flags = 0,
    Size minSize = Size(),
    Size maxSize = Size()
    )

    image 输入图像

    objects 检测出的物体的矩形轮廓

    scaleFactor 这个是每次缩小图像的比例,默认是1.1

    minNeighbors 匹配成功所需要的周围矩形框的数目,每一个特征匹配到的区域都是一个矩形框,只有多个矩形框同时存在的时候,才认为是匹配成功,比如人脸,这个默认值是3。

    flags

    可以取如下这些值:
    CASCADE_DO_CANNY_PRUNING=1, 利用canny边缘检测来排除一些边缘很少或者很多的图像区域
    CASCADE_SCALE_IMAGE=2, 正常比例检测
    CASCADE_FIND_BIGGEST_OBJECT=4, 只检测最大的物体

    minObjectSize maxObjectSize:匹配物体的大小范围

    § detectMultiScale() [2/3]

    void cv::CascadeClassifier::detectMultiScale ( InputArray image,
    std::vector< Rect > & objects,
    std::vector< int > & numDetections,
    double scaleFactor = 1.1,
    int minNeighbors = 3,
    int flags = 0,
    Size minSize = Size(),
    Size maxSize = Size()
    )

    § detectMultiScale() [3/3]

    void cv::CascadeClassifier::detectMultiScale ( InputArray image,
    std::vector< Rect > & objects,
    std::vector< int > & rejectLevels,
    std::vector< double > & levelWeights,
    double scaleFactor = 1.1,
    int minNeighbors = 3,
    int flags = 0,
    Size minSize = Size(),
    Size maxSize = Size(),
    bool outputRejectLevels = false
    )

二.代码实现

#include "opencv2/objdetect.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"

#include <stdio.h>

using namespace std;
using namespace cv;

/** Function Headers */
void detectAndDisplay( Mat frame );

/** Global variables */
String face_cascade_name, eyes_cascade_name;
CascadeClassifier face_cascade;
CascadeClassifier eyes_cascade;
String window_name = "Capture - Face detection";

/** @function main */
int main( int argc, const char** argv )
{
    CommandLineParser parser(argc, argv,
        "{help h||}"
        "{face_cascade|../../data/haarcascades/haarcascade_frontalface_alt.xml|}"
        "{eyes_cascade|../../data/haarcascades/haarcascade_eye_tree_eyeglasses.xml|}");

    parser.about( "\nThis program demonstrates using the cv::CascadeClassifier class to detect objects (Face + eyes) in a video stream.\n"
                  "You can use Haar or LBP features.\n\n" );
    parser.printMessage();

    face_cascade_name = parser.get<String>("face_cascade");
    eyes_cascade_name = parser.get<String>("eyes_cascade");
    VideoCapture capture;
    Mat frame;

    //-- 1. Load the cascades //加载级联分类器文件
    if( !face_cascade.load( face_cascade_name ) ){ printf("--(!)Error loading face cascade\n"); return -1; };
    if( !eyes_cascade.load( eyes_cascade_name ) ){ printf("--(!)Error loading eyes cascade\n"); return -1; };

    //-- 2. Read the video stream //读取视频流
    capture.open( 0 );
    if ( ! capture.isOpened() ) { printf("--(!)Error opening video capture\n"); return -1; }

    while ( capture.read(frame) )
    {
        if( frame.empty() )
        {
            printf(" --(!) No captured frame -- Break!");
            break;
        }

        //-- 3. Apply the classifier to the frame//用级联分类器来检测目标图片
        detectAndDisplay( frame );

        if( waitKey(10) == 27 ) { break; } // escape
    }
    return 0;
}

/** @function detectAndDisplay */
void detectAndDisplay( Mat frame )
{
    std::vector<Rect> faces;
    Mat frame_gray;

    cvtColor( frame, frame_gray, COLOR_BGR2GRAY );//颜色空间转换,由于haar和LBP均是对灰度进行处理,所以必须事先转换成灰度
    equalizeHist( frame_gray, frame_gray );//直方图均衡化

    //-- Detect faces //检测脸
    face_cascade.detectMultiScale( frame_gray, faces, 1.1, 2, 0|CASCADE_SCALE_IMAGE, Size(60, 60) );//在目标图像中检测出脸的矩形轮廓

    for ( size_t i = 0; i < faces.size(); i++ )
    {
        Point center( faces[i].x + faces[i].width/2, faces[i].y + faces[i].height/2 );
        ellipse( frame, center, Size( faces[i].width/2, faces[i].height/2 ), 0, 0, 360, Scalar( 255, 0, 255 ), 4, 8, 0 );//画出包围脸部的椭圆

        Mat faceROI = frame_gray( faces[i] );//确定脸部所在的矩形区域为感兴趣区域,然后进行后续的眼睛检测
        std::vector<Rect> eyes;//矩形向量

        //-- In each face, detect eyes
        eyes_cascade.detectMultiScale( faceROI, eyes, 1.1, 2, 0 |CASCADE_SCALE_IMAGE, Size(50, 50) );//检测眼部

        for ( size_t j = 0; j < eyes.size(); j++ )
        {
            Point eye_center( faces[i].x + eyes[j].x + eyes[j].width/2, faces[i].y + eyes[j].y + eyes[j].height/2 );
            int radius = cvRound( (eyes[j].width + eyes[j].height)*0.25 );
            circle( frame, eye_center, radius, Scalar( 255, 0, 0 ), 4, 8, 0 );//画出眼部所在的圆圈
        }
    }
    //-- Show what you got
    imshow( window_name, frame );
}

![](/home/mazh/Pictures/Screenshot from 2019-05-28 16-53-58.png)