堆和优先队列
程序员文章站
2024-02-16 08:31:22
...
优先队列
1.1优先队列的底层实现
根据优先队列的特点 可以使用二叉堆作为优先队列的底层实现
接下来主要回顾对的特点
堆
2.1 堆的分类
堆的一个重要的性质就是 任意节点的值总是>=子节点的值或<=子节点的值
2.2 堆的接口设计
2.3 二叉堆
2.4 二叉堆元素的添加和删除
- 向堆中添加元素siftup
- 向堆中删除元素siftdown
2.5 siftup
2.6 siftdown
2.7 siftdown 和siftup 以及优先队列的实现
public class MaxHeap<E extends Comparable<E>> {
private Array<E> data;
public MaxHeap(int capacity){
data = new Array<>(capacity);
}
public MaxHeap(){
data = new Array<>();
}
public MaxHeap(E[] arr){
data = new Array<>(arr);
if(arr.length != 1){
for(int i = parent(arr.length - 1) ; i >= 0 ; i --)
siftDown(i);
}
}
// 返回堆中的元素个数
public int size(){
return data.getSize();
}
// 返回一个布尔值, 表示堆中是否为空
public boolean isEmpty(){
return data.isEmpty();
}
// 返回完全二叉树的数组表示中,一个索引所表示的元素的父亲节点的索引
private int parent(int index){
if(index == 0)
throw new IllegalArgumentException("index-0 doesn't have parent.");
return (index - 1) / 2;
}
// 返回完全二叉树的数组表示中,一个索引所表示的元素的左孩子节点的索引
private int leftChild(int index){
return index * 2 + 1;
}
// 返回完全二叉树的数组表示中,一个索引所表示的元素的右孩子节点的索引
private int rightChild(int index){
return index * 2 + 2;
}
// 向堆中添加元素
public void add(E e){
data.addLast(e);
siftUp(data.getSize() - 1);
}
private void siftUp(int k){
while(k > 0 && data.get(parent(k)).compareTo(data.get(k)) < 0 ){
data.swap(k, parent(k));
k = parent(k);
}
}
// 看堆中的最大元素
public E findMax(){
if(data.getSize() == 0)
throw new IllegalArgumentException("Can not findMax when heap is empty.");
return data.get(0);
}
// 取出堆中最大元素
public E extractMax(){
E ret = findMax();
data.swap(0, data.getSize() - 1);
data.removeLast();
siftDown(0);
return ret;
}
private void siftDown(int k){
while(leftChild(k) < data.getSize()){
int j = leftChild(k); // 在此轮循环中,data[k]和data[j]交换位置
if( j + 1 < data.getSize() &&
data.get(j + 1).compareTo(data.get(j)) > 0 )
j ++;
// data[j] 是 leftChild 和 rightChild 中的最大值
if(data.get(k).compareTo(data.get(j)) >= 0 )
break;
data.swap(k, j);
k = j;
}
}
// 取出堆中的最大元素,并且替换成元素e
public E replace(E e){
E ret = findMax();
data.set(0, e);
siftDown(0);
return ret;
}
}
public class PriorityQueue<E extends Comparable<E>> implements Queue<E> {
private MaxHeap<E> maxHeap;
public PriorityQueue(){
maxHeap = new MaxHeap<>();
}
@Override
public int getSize(){
return maxHeap.size();
}
@Override
public boolean isEmpty(){
return maxHeap.isEmpty();
}
@Override
public E getFront(){
return maxHeap.findMax();
}
@Override
public void enqueue(E e){
maxHeap.add(e);
}
@Override
public E dequeue(){
return maxHeap.extractMax();
}
}
上一篇: 久攻不下市场,Windows Phone问题出在哪里
下一篇: QQ塔防三国志武将满级图文心得分享