欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

堆和优先队列

程序员文章站 2024-02-16 08:31:22
...

优先队列

堆和优先队列

1.1优先队列的底层实现

根据优先队列的特点 可以使用二叉堆作为优先队列的底层实现

接下来主要回顾对的特点

2.1 堆的分类

堆和优先队列

堆的一个重要的性质就是 任意节点的值总是>=子节点的值或<=子节点的值

堆和优先队列

2.2 堆的接口设计

堆和优先队列

2.3 二叉堆

堆和优先队列

2.4 二叉堆元素的添加和删除

  • 向堆中添加元素siftup
  • 向堆中删除元素siftdown

2.5 siftup

堆和优先队列

2.6 siftdown

堆和优先队列

2.7 siftdown 和siftup 以及优先队列的实现

public class MaxHeap<E extends Comparable<E>> {

    private Array<E> data;

    public MaxHeap(int capacity){
        data = new Array<>(capacity);
    }

    public MaxHeap(){
        data = new Array<>();
    }

    public MaxHeap(E[] arr){
        data = new Array<>(arr);
        if(arr.length != 1){
            for(int i = parent(arr.length - 1) ; i >= 0 ; i --)
                siftDown(i);
        }
    }

    // 返回堆中的元素个数
    public int size(){
        return data.getSize();
    }

    // 返回一个布尔值, 表示堆中是否为空
    public boolean isEmpty(){
        return data.isEmpty();
    }

    // 返回完全二叉树的数组表示中,一个索引所表示的元素的父亲节点的索引
    private int parent(int index){
        if(index == 0)
            throw new IllegalArgumentException("index-0 doesn't have parent.");
        return (index - 1) / 2;
    }

    // 返回完全二叉树的数组表示中,一个索引所表示的元素的左孩子节点的索引
    private int leftChild(int index){
        return index * 2 + 1;
    }

    // 返回完全二叉树的数组表示中,一个索引所表示的元素的右孩子节点的索引
    private int rightChild(int index){
        return index * 2 + 2;
    }

    // 向堆中添加元素
    public void add(E e){
        data.addLast(e);
        siftUp(data.getSize() - 1);
    }

    private void siftUp(int k){

        while(k > 0 && data.get(parent(k)).compareTo(data.get(k)) < 0 ){
            data.swap(k, parent(k));
            k = parent(k);
        }
    }

    // 看堆中的最大元素
    public E findMax(){
        if(data.getSize() == 0)
            throw new IllegalArgumentException("Can not findMax when heap is empty.");
        return data.get(0);
    }

    // 取出堆中最大元素
    public E extractMax(){

        E ret = findMax();

        data.swap(0, data.getSize() - 1);
        data.removeLast();
        siftDown(0);

        return ret;
    }

    private void siftDown(int k){

        while(leftChild(k) < data.getSize()){
            int j = leftChild(k); // 在此轮循环中,data[k]和data[j]交换位置
            if( j + 1 < data.getSize() &&
                    data.get(j + 1).compareTo(data.get(j)) > 0 )
                j ++;
            // data[j] 是 leftChild 和 rightChild 中的最大值

            if(data.get(k).compareTo(data.get(j)) >= 0 )
                break;

            data.swap(k, j);
            k = j;
        }
    }

    // 取出堆中的最大元素,并且替换成元素e
    public E replace(E e){

        E ret = findMax();
        data.set(0, e);
        siftDown(0);
        return ret;
    }
}

public class PriorityQueue<E extends Comparable<E>> implements Queue<E> {

    private MaxHeap<E> maxHeap;

    public PriorityQueue(){
        maxHeap = new MaxHeap<>();
    }

    @Override
    public int getSize(){
        return maxHeap.size();
    }

    @Override
    public boolean isEmpty(){
        return maxHeap.isEmpty();
    }

    @Override
    public E getFront(){
        return maxHeap.findMax();
    }

    @Override
    public void enqueue(E e){
        maxHeap.add(e);
    }

    @Override
    public E dequeue(){
        return maxHeap.extractMax();
    }
}