机器学习速成课程笔记1:机器学习术语
快速翻阅,快速学习
什么是(监督式)机器学习?简单来说,它的定义如下:
- 机器学习系统通过学习如何组合输入信息来对从未见过的数据做出有用的预测。
下面我们来了解一下机器学习的基本术语。
标签
标签是我们要预测的事物,即简单线性回归中的 y
变量。标签可以是小麦未来的价格、图片中显示的动物品种、音频剪辑的含义或任何事物。
特征
特征是输入变量,即简单线性回归中的 x
变量。简单的机器学习项目可能会使用单个特征,而比较复杂的机器学习项目可能会使用数百万个特征,按如下方式指定:
在垃圾邮件检测器示例中,特征可能包括:
- 电子邮件文本中的字词
- 发件人的地址
- 发送电子邮件的时段
- 电子邮件中包含“一种奇怪的把戏”这样的短语。
样本
样本是指数据的特定实例:x。(我们采用粗体 x 表示它是一个矢量。)我们将样本分为以下两类:
- 有标签样本
- 无标签样本
有标签样本同时包含特征和标签。即:
labeled examples: {features, label}: (x, y)
我们使用有标签样本来训练模型。在我们的垃圾邮件检测器示例中,有标签样本是用户明确标记为“垃圾邮件”或“非垃圾邮件”的各个电子邮件。
例如,下表显示了从包含加利福尼亚州房价信息的数据集中抽取的 5 个有标签样本:
无标签样本包含特征,但不包含标签。即:
unlabeled examples: {features, ?}: (x, ?)
在使用有标签样本训练了我们的模型之后,我们会使用该模型来预测无标签样本的标签。在垃圾邮件检测器示例中,无标签样本是用户尚未添加标签的新电子邮件。
模型
模型定义了特征与标签之间的关系。例如,垃圾邮件检测模型可能会将某些特征与“垃圾邮件”紧密联系起来。我们来重点介绍一下模型生命周期的两个阶段:
训练表示创建或学习模型。也就是说,您向模型展示有标签样本,让模型逐渐学习特征与标签之间的关系。
推断表示将训练后的模型应用于无标签样本。也就是说,您使用训练后的模型来做出有用的预测 (
y'
)。例如,在推断期间,您可以针对新的无标签样本预测medianHouseValue
。
回归与分类
回归模型可预测连续值。例如,回归模型做出的预测可回答如下问题:
加利福尼亚州一栋房产的价值是多少?
用户点击此广告的概率是多少?
分类模型可预测离散值。例如,分类模型做出的预测可回答如下问题:
某个指定电子邮件是垃圾邮件还是非垃圾邮件?
这是一张狗、猫还是仓鼠图片?
划重点!!!关键字词:
分类模型 (classification model)
一种机器学习模型,用于区分两种或多种离散类别。例如,某个自然语言处理分类模型可以确定输入的句子是法语、西班牙语还是意大利语。请与回归模型进行比较。
特征 (feature)
在进行预测时使用的输入变量。
标签 (label)
在监督式学习中,标签指样本的“答案”或“结果”部分。有标签数据集中的每个样本都包含一个或多个特征以及一个标签。例如,在房屋数据集中,特征可以包括卧室数、卫生间数以及房龄,而标签则可以是房价。在垃圾邮件检测数据集中,特征可以包括主题行、发件人以及电子邮件本身,而标签则可以是“垃圾邮件”或“非垃圾邮件”。
回归模型 (regression model)
一种模型,能够输出连续的值(通常为浮点值)。请与分类模型进行比较,分类模型输出离散值,例如“黄花菜”或“虎皮百合”。
样本 (example)
数据集的一行。一个样本包含一个或多个特征,此外还可能包含一个标签。另请参阅有标签样本和无标签样本。
推断 (inference)
在机器学习中,推断通常指以下过程:通过将训练过的模型应用于无标签样本来做出预测。在统计学中,推断是指在某些观测数据条件下拟合分布参数的过程。(请参阅*中有关统计学推断的文章。)
模型 (model)
机器学习系统从训练数据学到的内容的表示形式。多含义术语,可以理解为下列两种相关含义之一:
- 一种 TensorFlow 图,用于表示预测计算结构。
- 该 TensorFlow 图的特定权重和偏差,通过训练决定。
训练 (training)
确定构成模型的理想参数的过程。
推荐阅读
-
google机器学习速成教程学习笔记
-
谷歌机器学习速成课程学习笔记
-
机器学习速成课程笔记1:机器学习术语
-
机器学习速成课程 笔记
-
谷歌 机器学习速成课程
-
[机器学习速成课程] 嵌套 (Embeddings):编程练习-学习笔记
-
机器学习速成课程 | 练习 | Google Development——编程练习:特征集
-
机器学习速成课程 | 练习 | Google Development——编程练习:(TensorFlow) Hello World
-
机器学习速成课程 | 练习 | Google Development——编程练习:使用 TensorFlow 的起始步骤
-
机器学习速成课程 | 练习 | Google Development——编程练习:特征组合