欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

python 使用Id3算法实现决策树

程序员文章站 2024-02-11 13:35:58
...

依然是学习《统计学习方法》一书所做的简单实验,写代码的过程参考了大量其他的博客,本人在此深表感谢。代码实现的依然是书上的例子:
python 使用Id3算法实现决策树

import numpy as np
import math
import operator

def CreateDataSet():
    dataset = [ [1, 0,0,0,'no'],
                [1, 0,0,1,'no'],
                [1, 1,0,1,'yes'],
                [1, 1,1,0,'yes'],
                [1, 0,0,0,'no'],

                [2, 0,0,0,'no'],
                [2, 0,0,1,'no'],
                [2, 1,1,1,'yes'],
                [2, 0,1,2,'yes'],
                [2, 0,1,2,'yes'],

                [3, 0,1,2,'yes'],
                [3, 0,1,1,'yes'],
                [3, 1,0,1,'yes'],
                [3, 1,0,2,'yes'],
                [3, 0,0,0,'no'] ]
    labels = ['age', 'job','building','credit']
    return dataset, labels

#计算香农熵
def calcShannonEnt(dataSet):
    Ent = 0.0
    numEntries = len(dataSet)
    labelCounts = {}
    for feaVec in dataSet:
        currentLabel = feaVec[-1]
        if currentLabel not in labelCounts:
            labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1
    for key in labelCounts:
        prob = float(labelCounts[key])/numEntries
        Ent -= prob * math.log(prob, 2)
    return Ent

def majorityCnt(classList):
    classCount = {}
    for vote in classList:
        if vote not in classCount.keys():
            classCount[vote] = 0
        classCount[vote] = 1
    sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
    return sortedClassCount[0][0]

def splitDataSet(dataSet,axis,value):
    retDataSet=[]
    for featVec in dataSet:
        if featVec[axis]==value :
            reduceFeatVec=featVec[:axis]
            reduceFeatVec.extend(featVec[axis+1:])
            retDataSet.append(reduceFeatVec)
    return retDataSet #返回不含划分特征的子集

def choiceBestFea(dataSet):
    baseEntropy = calcShannonEnt(dataSet)
    numberFeatures = len(dataSet[0]) - 1
    bestFeatureId = -1;
    bestInfoGain = 0.0
    for i in range(numberFeatures):
        featList = [example[i] for example in dataSet]
        uniqueVals = set(featList)
        newEntropy = 0.0
        for value in uniqueVals:
            subFea = splitDataSet(dataSet,i,value)
            prob = len(subFea) / float(len(dataSet))
            newEntropy += prob * calcShannonEnt(subFea)
        infoGain = baseEntropy - newEntropy
        if (infoGain > bestInfoGain):
            bestInfoGain = infoGain
            bestFeatureId = i
    return bestFeatureId


def createDTree(dataSet,labels):
    #第一步,判断数据是不是都是同一类的,如果是同一类的,则只有一个节点即根节点
    classList = [example[-1] for example in dataSet]
    if classList.count(classList[0]) == len(classList):
        return classList[0]

    # 第二步,判断特征的个数,特征集为空,则只有一个节点即根节点,此时,需要通过投票的方式决定根节点的属性
    if len(dataSet[0]) == 1:
        return majorityCnt(classList)

    # 第三步,通过计算信息增益,选择出最优的特征,也就是信息增益最大的特征
    bestFeaId = choiceBestFea(dataSet)
    #第四步,选择出信息增益最大的特征,并使用该特征切分数据
    bestFeatLabel = labels[bestFeaId]
    del (labels[bestFeaId])
    featValues = [example[bestFeaId] for example in dataSet]
    uniqueVals = set(featValues)

    myTree = {bestFeatLabel: {}}
    #第五步,递归调用createDTree
    for value in uniqueVals:
        subLabels = labels[:]
        myTree[bestFeatLabel][value] = createDTree(splitDataSet(dataSet, bestFeaId, value), subLabels)
    return myTree


#输入两个变量(决策树,测试的数据)
def classify(inputTree,testVec):
    print(inputTree)
    firstStr=list(inputTree.keys())[0] #获取树的第一个特征属性
    secondDict=inputTree[firstStr] #树的分支,子集合Dict
    i=0
    classLabel = ""
    for key in secondDict.keys():
        if testVec[i]==key:
            if type(secondDict[key]).__name__=='dict':
                classLabel=classify(secondDict[key],testVec)
            else:
                #表明已经是叶子节点了
                classLabel=secondDict[key]
                break
            i += 1

    return classLabel

def storeTree(inputTree,filename):
    import pickle
    fw=open(filename,'wb') #pickle默认方式是二进制,需要制定'wb'
    pickle.dump(inputTree,fw)
    fw.close()

def reStoreTree(filename):
    import pickle
    fr=open(filename,'rb')#需要制定'rb',以byte形式读取
    return pickle.load(fr)


def test():
    dataSet,labels = CreateDataSet1()
    tree = createDTree(dataSet,labels);
    print(tree)

    return None

def train():
    myDat, labels = CreateDataSet()
    tree = createDTree(myDat, labels)
    storeTree(tree,"dtree.txt")
    return None

def test():
    tree = reStoreTree("dtree.txt")
    result = classify(tree,[0,0])
    return result

result = test()
print(result)
#train()

train()方法用来生成决策树,生成的决策树会被保存在dtree.txt文件中
test()方法用来测试决策树。
从生成的决策树来看,总共只有两个节点。第一个节点是有没有房,第二个节点是有没有工作。所以,测试的时候只需输入【0,0】或者【1,0】这样的长度为2的向量即可。