欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

决策树算法——ID3算法(Python3实现)

程序员文章站 2024-02-11 13:27:58
...

1、数据集

                                                  贷款申请样本数据表

1

青年

一般

2

青年

3

青年

4

青年

一般

5

青年

一般

6

中年

一般

7

中年

8

中年

9

中年

非常好

10

中年

非常好

11

老年

非常好

12

老年

13

老年

14

老年

非常好

15

老年

一般

先对数据集进行属性标注:

  • 年龄:0代表青年,1代表中年,2代表老年;
  • 有工作:0代表否,1代表是;
  • 有自己的房子:0代表否,1代表是;
  • 信贷情况:0代表一般,1代表好,2代表非常好;
  • 类别(是否给贷款):no代表否,yes代表是。

 

2、使用ID3算法递归构建决策树并使用决策树执行分类

2.1 ID3算法概述

        ID3算法的核心是在决策树各个结点上对应信息增益准则选择特征,递归地构建决策树。

        具体方法是:从根结点(root node)开始,对结点计算所有可能的特征的信息增益,选择信息增益最大的特征作为结点的特征,由该特征的不同取值建立子节点;再对子结点递归地调用以上方法,构建决策树;直到所有特征的信息增益均很小或没有特征可以选择为止,最后得到一个决策树。ID3相当于用极大似然法进行概率模型的选择。

2.2 递归终止的条件:

(1)所有类的标签完全相同,则直接返回该类标签。

(2)使用完所有即当前属性集为空,仍不能将数据集划分成仅包含唯一类别的分组,则挑选出现次数最多的类别作为返回值。

2.3 代码实现如下:

# -*- coding: UTF-8 -*-
from math import log
import operator



"""
函数说明:创建测试数据集
"""
def createDataSet():
    dataSet = [[0, 0, 0, 0, 'no'],         #数据集
               [0, 0, 0, 1, 'no'],
               [0, 1, 0, 1, 'yes'],
               [0, 1, 1, 0, 'yes'],
               [0, 0, 0, 0, 'no'],
               [1, 0, 0, 0, 'no'],
               [1, 0, 0, 1, 'no'],
               [1, 1, 1, 1, 'yes'],
               [1, 0, 1, 2, 'yes'],
               [1, 0, 1, 2, 'yes'],
               [2, 0, 1, 2, 'yes'],
               [2, 0, 1, 1, 'yes'],
               [2, 1, 0, 1, 'yes'],
               [2, 1, 0, 2, 'yes'],
               [2, 0, 0, 0, 'no']]
    labels = ['年龄', '有工作', '有自己的房子', '信贷情况']        #分类属性
    return dataSet, labels                           #返回数据集和分类属性


"""
函数说明:计算给定数据集的经验熵(香农熵)
Parameters:
    dataSet - 数据集
Returns:
    shannonEnt - 经验熵(香农熵)
"""
def calcShannonEnt(dataSet):
    numEntires = len(dataSet)                        #返回数据集的行数
    labelCounts = {}                                 #保存每个标签(Label)出现次数的字典
    for featVec in dataSet:                          #对每组特征向量进行统计
        currentLabel = featVec[-1]                   #提取标签(Label)信息
        if currentLabel not in labelCounts.keys():   #如果标签(Label)没有放入统计次数的字典,添加进去
            labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1               #Label计数
    shannonEnt = 0.0                                 #经验熵(香农熵)
    for key in labelCounts:                          #计算香农熵
        prob = float(labelCounts[key]) / numEntires  #选择该标签(Label)的概率
        shannonEnt -= prob * log(prob, 2)            #利用公式计算
    return shannonEnt                                #返回经验熵(香农熵)


"""
函数说明:按照给定特征划分数据集
Parameters:
    dataSet - 待划分的数据集
    axis - 划分数据集的特征
    value - 需要返回的特征的值
"""
def splitDataSet(dataSet, axis, value):
    retDataSet = []                                     #创建返回的数据集列表
    for featVec in dataSet:                             #遍历数据集
        if featVec[axis] == value:
            reducedFeatVec = featVec[:axis]             #去掉axis特征
            reducedFeatVec.extend(featVec[axis+1:])     #将符合条件的添加到返回的数据集
            retDataSet.append(reducedFeatVec)
    return retDataSet                                   #返回划分后的数据集


"""
函数说明:选择最优特征
Parameters:
    dataSet - 数据集
Returns:
    bestFeature - 信息增益最大的(最优)特征的索引值
"""
def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0]) - 1                     #特征数量
    baseEntropy = calcShannonEnt(dataSet)                 #计算数据集的香农熵
    bestInfoGain = 0.0                                    #信息增益
    bestFeature = -1                                      #最优特征的索引值
    for i in range(numFeatures):                          #遍历所有特征
        #获取dataSet的第i个所有特征
        featList = [example[i] for example in dataSet]
        uniqueVals = set(featList)                         #创建set集合{},元素不可重复
        newEntropy = 0.0                                   #经验条件熵
        for value in uniqueVals:                           #计算信息增益
            subDataSet = splitDataSet(dataSet, i, value)           #subDataSet划分后的子集
            prob = len(subDataSet) / float(len(dataSet))           #计算子集的概率
            newEntropy += prob * calcShannonEnt(subDataSet)        #根据公式计算经验条件熵
        infoGain = baseEntropy - newEntropy                        #信息增益
        print("第%d个特征的增益为%.3f" % (i, infoGain))             #打印每个特征的信息增益
        if (infoGain > bestInfoGain):                              #计算信息增益
            bestInfoGain = infoGain                                #更新信息增益,找到最大的信息增益
            bestFeature = i                                        #记录信息增益最大的特征的索引值
    return bestFeature                                             #返回信息增益最大的特征的索引值


"""
函数说明:统计classList中出现此处最多的元素(类标签)
Parameters:
    classList - 类标签列表
Returns:
    sortedClassCount[0][0] - 出现此处最多的元素(类标签)
"""
def majorityCnt(classList):
    classCount = {}
    for vote in classList:                                        #统计classList中每个元素出现的次数
        if vote not in classCount.keys():
            classCount[vote] = 0
        classCount[vote] += 1
    sortedClassCount = sorted(classCount.items(), key = operator.itemgetter(1), reverse = True)        #根据字典的值降序排序
    return sortedClassCount[0][0]                                #返回classList中出现次数最多的元素


"""
函数说明:递归构建决策树
Parameters:
    dataSet - 训练数据集
    labels - 分类属性标签
    featLabels - 存储选择的最优特征标签
Returns:
    myTree - 决策树
"""
def createTree(dataSet, labels, featLabels):
    classList = [example[-1] for example in dataSet]               #取分类标签(是否放贷:yes or no)
    if classList.count(classList[0]) == len(classList):            #如果类别完全相同则停止继续划分
        return classList[0]
    if len(dataSet[0]) == 1:                                       #遍历完所有特征时返回出现次数最多的类标签
        return majorityCnt(classList)
    bestFeat = chooseBestFeatureToSplit(dataSet)                   #选择最优特征
    bestFeatLabel = labels[bestFeat]                               #最优特征的标签
    featLabels.append(bestFeatLabel)
    myTree = {bestFeatLabel:{}}                                    #根据最优特征的标签生成树
    del(labels[bestFeat])                                          #删除已经使用特征标签
    featValues = [example[bestFeat] for example in dataSet]        #得到训练集中所有最优特征的属性值
    uniqueVals = set(featValues)                                   #去掉重复的属性值
    for value in uniqueVals:
        subLabels=labels[:]
        #递归调用函数createTree(),遍历特征,创建决策树。
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels, featLabels)
    return myTree


"""
函数说明:使用决策树执行分类
Parameters:
    inputTree - 已经生成的决策树
    featLabels - 存储选择的最优特征标签
    testVec - 测试数据列表,顺序对应最优特征标签
Returns:
    classLabel - 分类结果
"""
def classify(inputTree, featLabels, testVec):
    firstStr = next(iter(inputTree))             #获取决策树结点
    secondDict = inputTree[firstStr]             #下一个字典
    featIndex = featLabels.index(firstStr)
    for key in secondDict.keys():
        if testVec[featIndex] == key:
            if type(secondDict[key]).__name__ == 'dict':
                classLabel = classify(secondDict[key], featLabels, testVec)
            else:
                classLabel = secondDict[key]
    return classLabel


if __name__ == '__main__':
    dataSet, labels = createDataSet()
    featLabels = []
    myTree = createTree(dataSet, labels, featLabels)
    print(myTree)
    testVec = [0, 1]     # 测试数据
    result = classify(myTree, featLabels, testVec)
    if result == 'yes':
        print('放贷')
    if result == 'no':
        print('不放贷')

结果如下:

决策树算法——ID3算法(Python3实现)

 

3、Matplotlib实现决策树可视化

代码如下:

import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
from matplotlib.font_manager import FontProperties
import matplotlib.pyplot as plt


#定义文本框和箭头格式
decisionNode=dict(boxstyle='sawtooth',fc='0.8')
leafNode=dict(boxstyle='round4',fc='0.8')
arrow_args=dict(arrowstyle='<-')
#设置中文字体
font = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=14)


"""
函数说明:获取决策树叶子结点的数目
Parameters:
    myTree - 决策树
Returns:
    numLeafs - 决策树的叶子结点的数目
"""
def getNumLeafs(myTree):
    numLeafs = 0                   #初始化叶子
    # python3中myTree.keys()返回的是dict_keys,不在是list,所以不能使用myTree.keys()[0]的方法获取结点属性,
    # 可以使用list(myTree.keys())[0]
    firstStr = next(iter(myTree))
    secondDict = myTree[firstStr]                      #获取下一组字典
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':     #测试该结点是否为字典,如果不是字典,代表此结点为叶子结点
            numLeafs += getNumLeafs(secondDict[key])
        else:
            numLeafs +=1
    return numLeafs


"""
函数说明:获取决策树的层数
Parameters:
    myTree - 决策树
Returns:
    maxDepth - 决策树的层数
"""
def getTreeDepth(myTree):
    maxDepth = 0                                  #初始化决策树深度
    # python3中myTree.keys()返回的是dict_keys,不在是list,所以不能使用myTree.keys()[0]的方法获取结点属性,
    # 可以使用list(myTree.keys())[0]
    firstStr = next(iter(myTree))
    secondDict = myTree[firstStr]                          #获取下一个字典
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':         #测试该结点是否为字典,如果不是字典,代表此结点为叶子结点
            thisDepth = 1 + getTreeDepth(secondDict[key])
        else:
            thisDepth = 1
        if thisDepth > maxDepth:
            maxDepth = thisDepth      #更新层数
    return maxDepth


"""
函数说明:绘制结点
Parameters:
    nodeTxt - 结点名
    centerPt - 文本位置
    parentPt - 标注的箭头位置
    nodeType - 结点格式
"""
def plotNode(nodeTxt, centerPt, parentPt, nodeType):
    arrow_args = dict(arrowstyle="<-")                                          #定义箭头格式
    font = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=14)        #设置中文字体
    createPlot.ax1.annotate(nodeTxt, xy=parentPt,  xycoords='axes fraction',    #绘制结点
                            xytext=centerPt, textcoords='axes fraction',
                            va="center", ha="center", bbox=nodeType, arrowprops=arrow_args,fontproperties=font)


"""
函数说明:标注有向边属性值
Parameters:
    cntrPt、parentPt - 用于计算标注位置
    txtString - 标注的内容
"""
def plotMidText(cntrPt, parentPt, txtString):
    xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]                               #计算标注位置
    yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]
    createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)


"""
函数说明:绘制决策树
Parameters:
    myTree - 决策树(字典)
    parentPt - 标注的内容
    nodeTxt - 结点名
"""
def plotTree(myTree, parentPt, nodeTxt):
    decisionNode = dict(boxstyle="sawtooth", fc="0.8")                                    #设置结点格式
    leafNode = dict(boxstyle="round4", fc="0.8")                                          #设置叶结点格式
    numLeafs = getNumLeafs(myTree)                                                        #获取决策树叶结点数目,决定了树的宽度
    depth = getTreeDepth(myTree)                                                          #获取决策树层数
    firstStr = next(iter(myTree))                                                         #下个字典
    cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff) #中心位置
    plotMidText(cntrPt, parentPt, nodeTxt)                                                #标注有向边属性值
    plotNode(firstStr, cntrPt, parentPt, decisionNode)                                    #绘制结点
    secondDict = myTree[firstStr]                                                         #下一个字典,也就是继续绘制子结点
    plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD                                   #y偏移
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':                 #测试该结点是否为字典,如果不是字典,代表此结点为叶子结点
            plotTree(secondDict[key],cntrPt,str(key))              #不是叶结点,递归调用继续绘制
        else:                                                      #如果是叶结点,绘制叶结点,并标注有向边属性值
            plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
            plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
            plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
    plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD


"""
函数说明:创建绘制面板
Parameters:
    inTree - 决策树(字典)
"""
def createPlot(inTree):
    fig = plt.figure(1, facecolor='white')                               #创建fig
    fig.clf()                                                            #清空fig
    axprops = dict(xticks=[], yticks=[])
    createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)          #去掉x、y轴
    plotTree.totalW = float(getNumLeafs(inTree))                         #获取决策树叶结点数目
    plotTree.totalD = float(getTreeDepth(inTree))                        #获取决策树层数
    plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0;           #x偏移
    plotTree(inTree, (0.5,1.0), '')                                      #绘制决策树
    plt.show()


if __name__=='__main__':
    mytree={'有自己的房子': {0: {'有工作': {0: 'no', 1: 'yes'}}, 1: 'yes'}}
    createPlot(mytree)

可视化结果:

 决策树算法——ID3算法(Python3实现)

 

4、决策树的存储与读取

代码如下:

# -*- coding: UTF-8 -*-
import pickle


"""
函数说明:存储决策树
Parameters:
    inputTree - 已经生成的决策树
    filename - 决策树的存储文件名
"""
def storeTree(inputTree,filename):
    with open(filename,'wb') as fw:
        pickle.dump(inputTree,fw)


"""
函数说明:读取决策树
Parameters:
    filename - 决策树的存储文件名
Returns:
    pickle.load(fr) - 决策树字典
"""
def grabTree(filename):
    with open(filename,'rb') as fr:
        return pickle.load(fr)

if __name__ == '__main__':
    myTree = {'有自己的房子': {0: {'有工作': {0: 'no', 1: 'yes'}}, 1: 'yes'}}
    storeTree(myTree, 'classifierStorage.txt')
    myTree01 = grabTree('classifierStorage.txt')
    print(myTree01)

结果如下:

决策树算法——ID3算法(Python3实现)

 

5、决策树优点和缺点

优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据

缺点:可能会产生过度匹配问题(过拟合)