欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Keras 实现多层感知机

程序员文章站 2024-02-03 21:09:16
...

这里以 mnist 数据集为例,代码如下:

import  tensorflow as tf
from    tensorflow.keras import datasets, layers, optimizers, Sequential, metrics

# 设置GPU使用方式
# 获取GPU列表
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
    try:
        for gpu in gpus:
            # 设置GPU为增长式占用
            tf.config.experimental.set_memory_growth(gpu, True)
    except RuntimeError as e:
        # 打印异常
        print(e)

# 导入数据
(x_train, y_train),(x_val, y_val) = datasets.mnist.load_data()
print('datasets:', x_train.shape, y_train.shape, x_train.min(), x_train.max())

# 将样本属性转换为张量
x_train = tf.convert_to_tensor(x_train, dtype=tf.float32) / 255.
x_val = tf.convert_to_tensor(x_val, dtype=tf.float32) / 255.

# 每批次的样本个数
batch_size = 512

# 模型迭代次数
epochs = 100

# 序列模型 Sequential 适用于每层只有一个输入张量和一个输出张量的简单层堆栈
model = Sequential([layers.Dense(256, activation='relu'),
                     layers.Dense(128, activation='relu'),
                     layers.Dense(10)]) 

# input_shape 为输入层的形状参数 None 代表任意批次 28* 28 代表输入参数维度
model.build(input_shape=(None, 28*28))

# 序列模型信息打印
model.summary()

# Keras 中的一种训练方式
x_train = tf.reshape(x_train, (-1, 28*28))
x_val = tf.reshape(x_val, (-1, 28*28))
y_train = tf.one_hot(y_train, depth=10)
y_val = tf.one_hot(y_val, depth=10)

model.compile(
    optimizer = tf.keras.optimizers.Adam(lr=0.01),
    loss = tf.keras.losses.CategoricalCrossentropy(from_logits=True),
    metrics=[tf.keras.metrics.CategoricalAccuracy()])

history = model.fit(x_train,y_train,batch_size,epochs,validation_data = (x_val, y_val))

x = [i for i in range(0, epochs)]

plt.figure()
plt.plot(x, history.history["categorical_accuracy"], color='blue', label='vaildation')
plt.plot(x, history.history["val_categorical_accuracy"], color='red', label='training')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
plt.show()
plt.close()

训练曲线如下:

Keras 实现多层感知机