欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python实现多层感知器

程序员文章站 2024-01-27 21:04:16
写了个多层感知器,用bp梯度下降更新,拟合正弦曲线,效果凑合。 # -*- coding: utf-8 -*- import numpy as np impo...

写了个多层感知器,用bp梯度下降更新,拟合正弦曲线,效果凑合。

# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
 
 
def sigmod(z):
 return 1.0 / (1.0 + np.exp(-z))
 
 
class mlp(object):
 def __init__(self, lr=0.1, lda=0.0, te=1e-5, epoch=100, size=none):
  self.learningrate = lr
  self.lambda_ = lda
  self.thresholderror = te
  self.maxepoch = epoch
  self.size = size
  self.w = []
  self.b = []
  self.init()
 
 def init(self):
  for i in xrange(len(self.size)-1):
   self.w.append(np.mat(np.random.uniform(-0.5, 0.5, size=(self.size[i+1], self.size[i]))))
   self.b.append(np.mat(np.random.uniform(-0.5, 0.5, size=(self.size[i+1], 1))))
 
 def forwardpropagation(self, item=none):
  a = [item]
  for windex in xrange(len(self.w)):
   a.append(sigmod(self.w[windex]*a[-1]+self.b[windex]))
  """
  print "-----------------------------------------"
  for i in a:
   print i.shape,
  print
  for i in self.w:
   print i.shape,
  print
  for i in self.b:
   print i.shape,
  print
  print "-----------------------------------------"
  """
  return a
 
 def backpropagation(self, label=none, a=none):
  # print "backpropagation--------------------begin"
  delta = [(a[-1]-label)*a[-1]*(1.0-a[-1])]
  for i in xrange(len(self.w)-1):
   abc = np.multiply(a[-2-i], 1-a[-2-i])
   cba = np.multiply(self.w[-1-i].t*delta[-1], abc)
   delta.append(cba)
  """
  print "++++++++++++++delta++++++++++++++++++++"
  print "len(delta):", len(delta)
  for ii in delta:
   print ii.shape,
  print "\n======================================="
  """
  for j in xrange(len(delta)):
   ads = delta[j]*a[-2-j].t
   # print self.w[-1-j].shape, ads.shape, self.b[-1-j].shape, delta[j].shape
   self.w[-1-j] = self.w[-1-j]-self.learningrate*(ads+self.lambda_*self.w[-1-j])
   self.b[-1-j] = self.b[-1-j]-self.learningrate*delta[j]
   """print "=======================================1234"
   for ij in self.b:
    print ij.shape,
   print
   """
  # print "backpropagation--------------------finish"
  error = 0.5*(a[-1]-label)**2
  return error
 
 def train(self, input_=none, target=none, show=10):
  for ep in xrange(self.maxepoch):
   error = []
   for itemindex in xrange(input_.shape[1]):
    a = self.forwardpropagation(input_[:, itemindex])
    e = self.backpropagation(target[:, itemindex], a)
    error.append(e[0, 0])
   tt = sum(error)/len(error)
   if tt < self.thresholderror:
    print "finish {0}: ".format(ep), tt
    return
   elif ep % show == 0:
    print "epoch {0}: ".format(ep), tt
 
 def sim(self, inp=none):
  return self.forwardpropagation(item=inp)[-1]
 
 
if __name__ == "__main__":
 tt = np.arange(0, 6.28, 0.01)
 labels = np.zeros_like(tt)
 print tt.shape
 """
 for po in xrange(tt.shape[0]):
  if tt[po] < 4:
   labels[po] = 0.0
  elif 8 > tt[po] >= 4:
   labels[po] = 0.25
  elif 12 > tt[po] >= 8:
   labels[po] = 0.5
  elif 16 > tt[po] >= 12:
   labels[po] = 0.75
  else:
   labels[po] = 1.0
 """
 tt = np.mat(tt)
 labels = np.sin(tt)*0.5+0.5
 labels = np.mat(labels)
 model = mlp(lr=0.2, lda=0.0, te=1e-5, epoch=500, size=[1, 6, 6, 6, 1])
 print tt.shape, labels.shape
 print len(model.w), len(model.b)
 print
 model.train(input_=tt, target=labels, show=10)
 sims = [model.sim(tt[:, idx])[0, 0] for idx in xrange(tt.shape[1])]
 
 xx = tt.tolist()[0]
 plt.figure()
 plt.plot(xx, labels.tolist()[0], xx, sims, 'r')
 plt.show()

效果图:

python实现多层感知器

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。