C++ 智能指针(shared_ptr/weak_ptr)源码分析
c++11目前已经引入了unique_ptr, shared_ptr, weak_ptr等智能指针以及相关的模板类enable_shared_from_this等。被广泛使用的是shared_ptr, shared_pt具有c++中一般指针(build-in/raw)的特性,同时它可以管理用户用new创建的对象,可以说,shared_ptr实现了c++中的raii机制,让用户不用负责对象的内存回收,可以很方便的管理对象的生命周期,避免内存泄漏。一般的智能指针都定义为一个模板类,它的类型由被管理的对象类型初始化,内部包含了一个指向该对象的裸指针。
unique_ptr, shared_ptr, weak_ptr的特点如下:
unique_ptr独享被管理对象,同一时刻只能有一个unique_ptr拥有对象的所有权,当其被赋值时对象的所有权也发生转移,当其被销毁时对象也自动被销毁shared_ptr共享被管理对象,同一时刻可以有多个shared_ptr拥有对象的所有权,当最后一个shared_ptr对象销毁时,对象自动销毁weak_ptr不拥有对象的所有权,但是它可以判断对象是否存在和返回指向对象的shared_ptr指针;它的用途之一是了解决多个对象内部含有shared_ptr引起的循环指向导致对象无法释放的问题那么c++中是怎么实现这些特性的呢,我们可以在gcc的目录(gcc-6.1.0\gcc-6.1.0\libstdc++-v3\include\tr1)中找到智能指针的一种实现,通过分析其源码找到答案;其它例如boost::shared_ptr等的实现也是类似的。gcc中相关智能指针的实现源码如下:
// -*- c++ -*- // copyright (c) 2007-2016 free software foundation, inc. // // this file is part of the gnu iso c++ library. this library is free // software; you can redistribute it and/or modify it under the // terms of the gnu general public license as published by the // free software foundation; either version 3, or (at your option) // any later version. // this library is distributed in the hope that it will be useful, // but without any warranty; without even the implied warranty of // merchantability or fitness for a particular purpose. see the // gnu general public license for more details. // under section 7 of gpl version 3, you are granted additional // permissions described in the gcc runtime library exception, version // 3.1, as published by the free software foundation. // you should have received a copy of the gnu general public license and // a copy of the gcc runtime library exception along with this program; // see the files copying3 and copying.runtime respectively. if not, see // . // shared_count.hpp // copyright (c) 2001, 2002, 2003 peter dimov and multi media ltd. // shared_ptr.hpp // copyright (c) 1998, 1999 greg colvin and beman dawes. // copyright (c) 2001, 2002, 2003 peter dimov // weak_ptr.hpp // copyright (c) 2001, 2002, 2003 peter dimov // enable_shared_from_this.hpp // copyright (c) 2002 peter dimov // distributed under the boost software license, version 1.0. (see // accompanying file license_1_0.txt or copy at // https://www.boost.org/license_1_0.txt) // gcc note: based on version 1.32.0 of the boost library. /** @file tr1/shared_ptr.h * this is an internal header file, included by other library headers. * do not attempt to use it directly. @headername{tr1/memory} */ #ifndef _tr1_shared_ptr_h #define _tr1_shared_ptr_h 1 namespace std _glibcxx_visibility(default) { namespace tr1 { _glibcxx_begin_namespace_version /** * @brief exception possibly thrown by @c shared_ptr. * @ingroup exceptions */ class bad_weak_ptr : public std::exception { public: virtual char const* what() const throw() { return "tr1::bad_weak_ptr"; } }; // substitute for bad_weak_ptr object in the case of -fno-exceptions. inline void __throw_bad_weak_ptr() { _glibcxx_throw_or_abort(bad_weak_ptr()); } using __gnu_cxx::_lock_policy; using __gnu_cxx::__default_lock_policy; using __gnu_cxx::_s_single; using __gnu_cxx::_s_mutex; using __gnu_cxx::_s_atomic; // empty helper class except when the template argument is _s_mutex. template<_lock_policy _lp> class _mutex_base { protected: // the atomic policy uses fully-fenced builtins, single doesn't care. enum { _s_need_barriers = 0 }; }; template<> class _mutex_base<_s_mutex> : public __gnu_cxx::__mutex { protected: // this policy is used when atomic builtins are not available. // the replacement atomic operations might not have the necessary // memory barriers. enum { _s_need_barriers = 1 }; }; template<_lock_policy _lp = __default_lock_policy> class _sp_counted_base : public _mutex_base<_lp> { public: _sp_counted_base() : _m_use_count(1), _m_weak_count(1) { } virtual ~_sp_counted_base() // nothrow { } // called when _m_use_count drops to zero, to release the resources // managed by *this. virtual void _m_dispose() = 0; // nothrow // called when _m_weak_count drops to zero. virtual void _m_destroy() // nothrow { delete this; } virtual void* _m_get_deleter(const std::type_info&) = 0; void _m_add_ref_copy() { __gnu_cxx::__atomic_add_dispatch(&_m_use_count, 1); } void _m_add_ref_lock(); void _m_release() // nothrow { // be race-detector-friendly. for more info see bits/c++config. _glibcxx_synchronization_happens_before(&_m_use_count); if (__gnu_cxx::__exchange_and_add_dispatch(&_m_use_count, -1) == 1) { _glibcxx_synchronization_happens_after(&_m_use_count); _m_dispose(); // there must be a memory barrier between dispose() and destroy() // to ensure that the effects of dispose() are observed in the // thread that runs destroy(). // see https://gcc.gnu.org/ml/libstdc++/2005-11/msg00136.html if (_mutex_base<_lp>::_s_need_barriers) { __atomic_thread_fence (__atomic_acq_rel); } // be race-detector-friendly. for more info see bits/c++config. _glibcxx_synchronization_happens_before(&_m_weak_count); if (__gnu_cxx::__exchange_and_add_dispatch(&_m_weak_count, -1) == 1) { _glibcxx_synchronization_happens_after(&_m_weak_count); _m_destroy(); } } } void _m_weak_add_ref() // nothrow { __gnu_cxx::__atomic_add_dispatch(&_m_weak_count, 1); } void _m_weak_release() // nothrow { // be race-detector-friendly. for more info see bits/c++config. _glibcxx_synchronization_happens_before(&_m_weak_count); if (__gnu_cxx::__exchange_and_add_dispatch(&_m_weak_count, -1) == 1) { _glibcxx_synchronization_happens_after(&_m_weak_count); if (_mutex_base<_lp>::_s_need_barriers) { // see _m_release(), // destroy() must observe results of dispose() __atomic_thread_fence (__atomic_acq_rel); } _m_destroy(); } } long _m_get_use_count() const // nothrow { // no memory barrier is used here so there is no synchronization // with other threads. return const_cast(_m_use_count); } private: _sp_counted_base(_sp_counted_base const&); _sp_counted_base& operator=(_sp_counted_base const&); _atomic_word _m_use_count; // #shared _atomic_word _m_weak_count; // #weak + (#shared != 0) }; template<> inline void _sp_counted_base<_s_single>:: _m_add_ref_lock() { if (__gnu_cxx::__exchange_and_add_dispatch(&_m_use_count, 1) == 0) { _m_use_count = 0; __throw_bad_weak_ptr(); } } template<> inline void _sp_counted_base<_s_mutex>:: _m_add_ref_lock() { __gnu_cxx::__scoped_lock sentry(*this); if (__gnu_cxx::__exchange_and_add_dispatch(&_m_use_count, 1) == 0) { _m_use_count = 0; __throw_bad_weak_ptr(); } } template<> inline void _sp_counted_base<_s_atomic>:: _m_add_ref_lock() { // perform lock-free add-if-not-zero operation. _atomic_word __count = _m_use_count; do { if (__count == 0) __throw_bad_weak_ptr(); // replace the current counter value with the old value + 1, as // long as it's not changed meanwhile. } while (!__atomic_compare_exchange_n(&_m_use_count, &__count, __count + 1, true, __atomic_acq_rel, __atomic_relaxed)); } template class _sp_counted_base_impl : public _sp_counted_base<_lp> { public: // precondition: __d(__p) must not throw. _sp_counted_base_impl(_ptr __p, _deleter __d) : _m_ptr(__p), _m_del(__d) { } virtual void _m_dispose() // nothrow { _m_del(_m_ptr); } virtual void* _m_get_deleter(const std::type_info& __ti) { #if __cpp_rtti return __ti == typeid(_deleter) ? &_m_del : 0; #else return 0; #endif } private: _sp_counted_base_impl(const _sp_counted_base_impl&); _sp_counted_base_impl& operator=(const _sp_counted_base_impl&); _ptr _m_ptr; // copy constructor must not throw _deleter _m_del; // copy constructor must not throw }; template<_lock_policy _lp = __default_lock_policy> class __weak_count; template struct _sp_deleter { typedef void result_type; typedef _tp* argument_type; void operator()(_tp* __p) const { delete __p; } }; template<_lock_policy _lp = __default_lock_policy> class __shared_count { public: __shared_count() : _m_pi(0) // nothrow { } template __shared_count(_ptr __p) : _m_pi(0) { __try { typedef typename std::tr1::remove_pointer<_ptr>::type _tp; _m_pi = new _sp_counted_base_impl<_ptr, _sp_deleter<_tp>, _lp>( __p, _sp_deleter<_tp>()); } __catch(...) { delete __p; __throw_exception_again; } } template __shared_count(_ptr __p, _deleter __d) : _m_pi(0) { __try { _m_pi = new _sp_counted_base_impl<_ptr, _deleter, _lp>(__p, __d); } __catch(...) { __d(__p); // call _deleter on __p. __throw_exception_again; } } // special case for auto_ptr<_tp> to provide the strong guarantee. template explicit __shared_count(std::auto_ptr<_tp>& __r) : _m_pi(new _sp_counted_base_impl<_tp*, _sp_deleter<_tp>, _lp >(__r.get(), _sp_deleter<_tp>())) { __r.release(); } // throw bad_weak_ptr when __r._m_get_use_count() == 0. explicit __shared_count(const __weak_count<_lp>& __r); ~__shared_count() // nothrow { if (_m_pi != 0) _m_pi->_m_release(); } __shared_count(const __shared_count& __r) : _m_pi(__r._m_pi) // nothrow { if (_m_pi != 0) _m_pi->_m_add_ref_copy(); } __shared_count& operator=(const __shared_count& __r) // nothrow { _sp_counted_base<_lp>* __tmp = __r._m_pi; if (__tmp != _m_pi) { if (__tmp != 0) __tmp->_m_add_ref_copy(); if (_m_pi != 0) _m_pi->_m_release(); _m_pi = __tmp; } return *this; } void _m_swap(__shared_count& __r) // nothrow { _sp_counted_base<_lp>* __tmp = __r._m_pi; __r._m_pi = _m_pi; _m_pi = __tmp; } long _m_get_use_count() const // nothrow { return _m_pi != 0 ? _m_pi->_m_get_use_count() : 0; } bool _m_unique() const // nothrow { return this->_m_get_use_count() == 1; } friend inline bool operator==(const __shared_count& __a, const __shared_count& __b) { return __a._m_pi == __b._m_pi; } friend inline bool operator<(const __shared_count& __a, const __shared_count& __b) { return std::less<_sp_counted_base<_lp>*>()(__a._m_pi, __b._m_pi); } void* _m_get_deleter(const std::type_info& __ti) const { return _m_pi ? _m_pi->_m_get_deleter(__ti) : 0; } private: friend class __weak_count<_lp>; _sp_counted_base<_lp>* _m_pi; }; template<_lock_policy _lp> class __weak_count { public: __weak_count() : _m_pi(0) // nothrow { } __weak_count(const __shared_count<_lp>& __r) : _m_pi(__r._m_pi) // nothrow { if (_m_pi != 0) _m_pi->_m_weak_add_ref(); } __weak_count(const __weak_count<_lp>& __r) : _m_pi(__r._m_pi) // nothrow { if (_m_pi != 0) _m_pi->_m_weak_add_ref(); } ~__weak_count() // nothrow { if (_m_pi != 0) _m_pi->_m_weak_release(); } __weak_count<_lp>& operator=(const __shared_count<_lp>& __r) // nothrow { _sp_counted_base<_lp>* __tmp = __r._m_pi; if (__tmp != 0) __tmp->_m_weak_add_ref(); if (_m_pi != 0) _m_pi->_m_weak_release(); _m_pi = __tmp; return *this; } __weak_count<_lp>& operator=(const __weak_count<_lp>& __r) // nothrow { _sp_counted_base<_lp>* __tmp = __r._m_pi; if (__tmp != 0) __tmp->_m_weak_add_ref(); if (_m_pi != 0) _m_pi->_m_weak_release(); _m_pi = __tmp; return *this; } void _m_swap(__weak_count<_lp>& __r) // nothrow { _sp_counted_base<_lp>* __tmp = __r._m_pi; __r._m_pi = _m_pi; _m_pi = __tmp; } long _m_get_use_count() const // nothrow { return _m_pi != 0 ? _m_pi->_m_get_use_count() : 0; } friend inline bool operator==(const __weak_count<_lp>& __a, const __weak_count<_lp>& __b) { return __a._m_pi == __b._m_pi; } friend inline bool operator<(const __weak_count<_lp>& __a, const __weak_count<_lp>& __b) { return std::less<_sp_counted_base<_lp>*>()(__a._m_pi, __b._m_pi); } private: friend class __shared_count<_lp>; _sp_counted_base<_lp>* _m_pi; }; // now that __weak_count is defined we can define this constructor: template<_lock_policy _lp> inline __shared_count<_lp>:: __shared_count(const __weak_count<_lp>& __r) : _m_pi(__r._m_pi) { if (_m_pi != 0) _m_pi->_m_add_ref_lock(); else __throw_bad_weak_ptr(); } // forward declarations. template class __shared_ptr; template class __weak_ptr; template class __enable_shared_from_this; template class shared_ptr; template class weak_ptr; template class enable_shared_from_this; // support for enable_shared_from_this. // friend of __enable_shared_from_this. template<_lock_policy _lp, typename _tp1, typename _tp2> void __enable_shared_from_this_helper(const __shared_count<_lp>&, const __enable_shared_from_this<_tp1, _lp>*, const _tp2*); // friend of enable_shared_from_this. template void __enable_shared_from_this_helper(const __shared_count<>&, const enable_shared_from_this<_tp1>*, const _tp2*); template<_lock_policy _lp> inline void __enable_shared_from_this_helper(const __shared_count<_lp>&, ...) { } struct __static_cast_tag { }; struct __const_cast_tag { }; struct __dynamic_cast_tag { }; // a smart pointer with reference-counted copy semantics. the // object pointed to is deleted when the last shared_ptr pointing to // it is destroyed or reset. template class __shared_ptr { public: typedef _tp element_type; __shared_ptr() : _m_ptr(0), _m_refcount() // never throws { } template explicit __shared_ptr(_tp1* __p) : _m_ptr(__p), _m_refcount(__p) { __glibcxx_function_requires(_convertibleconcept<_tp1*, _tp*>) typedef int _iscomplete[sizeof(_tp1)]; __enable_shared_from_this_helper(_m_refcount, __p, __p); } template __shared_ptr(_tp1* __p, _deleter __d) : _m_ptr(__p), _m_refcount(__p, __d) { __glibcxx_function_requires(_convertibleconcept<_tp1*, _tp*>) // todo requires _deleter copyconstructible and __d(__p) well-formed __enable_shared_from_this_helper(_m_refcount, __p, __p); } // generated copy constructor, assignment, destructor are fine. template __shared_ptr(const __shared_ptr<_tp1, _lp>& __r) : _m_ptr(__r._m_ptr), _m_refcount(__r._m_refcount) // never throws { __glibcxx_function_requires(_convertibleconcept<_tp1*, _tp*>) } template explicit __shared_ptr(const __weak_ptr<_tp1, _lp>& __r) : _m_refcount(__r._m_refcount) // may throw { __glibcxx_function_requires(_convertibleconcept<_tp1*, _tp*>) // it is now safe to copy __r._m_ptr, as _m_refcount(__r._m_refcount) // did not throw. _m_ptr = __r._m_ptr; } #if (__cplusplus < 201103l) || _glibcxx_use_deprecated // postcondition: use_count() == 1 and __r.get() == 0 template explicit __shared_ptr(std::auto_ptr<_tp1>& __r) : _m_ptr(__r.get()), _m_refcount() { // todo requries delete __r.release() well-formed __glibcxx_function_requires(_convertibleconcept<_tp1*, _tp*>) typedef int _iscomplete[sizeof(_tp1)]; _tp1* __tmp = __r.get(); _m_refcount = __shared_count<_lp>(__r); __enable_shared_from_this_helper(_m_refcount, __tmp, __tmp); } #endif template __shared_ptr(const __shared_ptr<_tp1, _lp>& __r, __static_cast_tag) : _m_ptr(static_cast(__r._m_ptr)), _m_refcount(__r._m_refcount) { } template __shared_ptr(const __shared_ptr<_tp1, _lp>& __r, __const_cast_tag) : _m_ptr(const_cast(__r._m_ptr)), _m_refcount(__r._m_refcount) { } template __shared_ptr(const __shared_ptr<_tp1, _lp>& __r, __dynamic_cast_tag) : _m_ptr(dynamic_cast(__r._m_ptr)), _m_refcount(__r._m_refcount) { if (_m_ptr == 0) // need to allocate new counter -- the cast failed _m_refcount = __shared_count<_lp>(); } template __shared_ptr& operator=(const __shared_ptr<_tp1, _lp>& __r) // never throws { _m_ptr = __r._m_ptr; _m_refcount = __r._m_refcount; // __shared_count::op= doesn't throw return *this; } #if (__cplusplus < 201103l) || _glibcxx_use_deprecated template __shared_ptr& operator=(std::auto_ptr<_tp1>& __r) { __shared_ptr(__r).swap(*this); return *this; } #endif void reset() // never throws { __shared_ptr().swap(*this); } template void reset(_tp1* __p) // _tp1 must be complete. { // catch self-reset errors. _glibcxx_debug_assert(__p == 0 || __p != _m_ptr); __shared_ptr(__p).swap(*this); } template void reset(_tp1* __p, _deleter __d) { __shared_ptr(__p, __d).swap(*this); } // allow class instantiation when _tp is [cv-qual] void. typename std::tr1::add_reference<_tp>::type operator*() const // never throws { _glibcxx_debug_assert(_m_ptr != 0); return *_m_ptr; } _tp* operator->() const // never throws { _glibcxx_debug_assert(_m_ptr != 0); return _m_ptr; } _tp* get() const // never throws { return _m_ptr; } // implicit conversion to "bool" private: typedef _tp* __shared_ptr::*__unspecified_bool_type; public: operator __unspecified_bool_type() const // never throws { return _m_ptr == 0 ? 0 : &__shared_ptr::_m_ptr; } bool unique() const // never throws { return _m_refcount._m_unique(); } long use_count() const // never throws { return _m_refcount._m_get_use_count(); } void swap(__shared_ptr<_tp, _lp>& __other) // never throws { std::swap(_m_ptr, __other._m_ptr); _m_refcount._m_swap(__other._m_refcount); } private: void* _m_get_deleter(const std::type_info& __ti) const { return _m_refcount._m_get_deleter(__ti); } template bool _m_less(const __shared_ptr<_tp1, _lp1>& __rhs) const { return _m_refcount < __rhs._m_refcount; } template friend class __shared_ptr; template friend class __weak_ptr; template friend _del* get_deleter(const __shared_ptr<_tp1, _lp1>&); // friends injected into enclosing namespace and found by adl: template friend inline bool operator==(const __shared_ptr& __a, const __shared_ptr<_tp1, _lp>& __b) { return __a.get() == __b.get(); } template friend inline bool operator!=(const __shared_ptr& __a, const __shared_ptr<_tp1, _lp>& __b) { return __a.get() != __b.get(); } template friend inline bool operator<(const __shared_ptr& __a, const __shared_ptr<_tp1, _lp>& __b) { return __a._m_less(__b); } _tp* _m_ptr; // contained pointer. __shared_count<_lp> _m_refcount; // reference counter. }; // 2.2.3.8 shared_ptr specialized algorithms. template inline void swap(__shared_ptr<_tp, _lp>& __a, __shared_ptr<_tp, _lp>& __b) { __a.swap(__b); } // 2.2.3.9 shared_ptr casts /* the seemingly equivalent * shared_ptr<_tp, _lp>(static_cast<_tp*>(__r.get())) * will eventually result in undefined behaviour, * attempting to delete the same object twice. */ template inline __shared_ptr<_tp, _lp> static_pointer_cast(const __shared_ptr<_tp1, _lp>& __r) { return __shared_ptr<_tp, _lp>(__r, __static_cast_tag()); } /* the seemingly equivalent * shared_ptr<_tp, _lp>(const_cast<_tp*>(__r.get())) * will eventually result in undefined behaviour, * attempting to delete the same object twice. */ template inline __shared_ptr<_tp, _lp> const_pointer_cast(const __shared_ptr<_tp1, _lp>& __r) { return __shared_ptr<_tp, _lp>(__r, __const_cast_tag()); } /* the seemingly equivalent * shared_ptr<_tp, _lp>(dynamic_cast<_tp*>(__r.get())) * will eventually result in undefined behaviour, * attempting to delete the same object twice. */ template inline __shared_ptr<_tp, _lp> dynamic_pointer_cast(const __shared_ptr<_tp1, _lp>& __r) { return __shared_ptr<_tp, _lp>(__r, __dynamic_cast_tag()); } // 2.2.3.7 shared_ptr i/o template std::basic_ostream<_ch, _tr>& operator<<(std::basic_ostream<_ch, _tr>& __os, const __shared_ptr<_tp, _lp>& __p) { __os << __p.get(); return __os; } // 2.2.3.10 shared_ptr get_deleter (experimental) template inline _del* get_deleter(const __shared_ptr<_tp, _lp>& __p) { #if __cpp_rtti return static_cast<_del*>(__p._m_get_deleter(typeid(_del))); #else return 0; #endif } template class __weak_ptr { public: typedef _tp element_type; __weak_ptr() : _m_ptr(0), _m_refcount() // never throws { } // generated copy constructor, assignment, destructor are fine. // the "obvious" converting constructor implementation: // // template // __weak_ptr(const __weak_ptr<_tp1, _lp>& __r) // : _m_ptr(__r._m_ptr), _m_refcount(__r._m_refcount) // never throws // { } // // has a serious problem. // // __r._m_ptr may already have been invalidated. the _m_ptr(__r._m_ptr) // conversion may require access to *__r._m_ptr (virtual inheritance). // // it is not possible to avoid spurious access violations since // in multithreaded programs __r._m_ptr may be invalidated at any point. template __weak_ptr(const __weak_ptr<_tp1, _lp>& __r) : _m_refcount(__r._m_refcount) // never throws { __glibcxx_function_requires(_convertibleconcept<_tp1*, _tp*>) _m_ptr = __r.lock().get(); } template __weak_ptr(const __shared_ptr<_tp1, _lp>& __r) : _m_ptr(__r._m_ptr), _m_refcount(__r._m_refcount) // never throws { __glibcxx_function_requires(_convertibleconcept<_tp1*, _tp*>) } template __weak_ptr& operator=(const __weak_ptr<_tp1, _lp>& __r) // never throws { _m_ptr = __r.lock().get(); _m_refcount = __r._m_refcount; return *this; } template __weak_ptr& operator=(const __shared_ptr<_tp1, _lp>& __r) // never throws { _m_ptr = __r._m_ptr; _m_refcount = __r._m_refcount; return *this; } __shared_ptr<_tp, _lp> lock() const // never throws { #ifdef __gthreads // optimization: avoid throw overhead. if (expired()) return __shared_ptr(); __try { return __shared_ptr(*this); } __catch(const bad_weak_ptr&) { // q: how can we get here? // a: another thread may have invalidated r after the // use_count test above. return __shared_ptr(); } #else // optimization: avoid try/catch overhead when single threaded. return expired() ? __shared_ptr() : __shared_ptr(*this); #endif } // xxx mt long use_count() const // never throws { return _m_refcount._m_get_use_count(); } bool expired() const // never throws { return _m_refcount._m_get_use_count() == 0; } void reset() // never throws { __weak_ptr().swap(*this); } void swap(__weak_ptr& __s) // never throws { std::swap(_m_ptr, __s._m_ptr); _m_refcount._m_swap(__s._m_refcount); } private: // used by __enable_shared_from_this. void _m_assign(_tp* __ptr, const __shared_count<_lp>& __refcount) { _m_ptr = __ptr; _m_refcount = __refcount; } template bool _m_less(const __weak_ptr<_tp1, _lp>& __rhs) const { return _m_refcount < __rhs._m_refcount; } template friend class __shared_ptr; template friend class __weak_ptr; friend class __enable_shared_from_this<_tp, _lp>; friend class enable_shared_from_this<_tp>; // friend injected into namespace and found by adl. template friend inline bool operator<(const __weak_ptr& __lhs, const __weak_ptr<_tp1, _lp>& __rhs) { return __lhs._m_less(__rhs); } _tp* _m_ptr; // contained pointer. __weak_count<_lp> _m_refcount; // reference counter. }; // 2.2.4.7 weak_ptr specialized algorithms. template inline void swap(__weak_ptr<_tp, _lp>& __a, __weak_ptr<_tp, _lp>& __b) { __a.swap(__b); } template class __enable_shared_from_this { protected: __enable_shared_from_this() { } __enable_shared_from_this(const __enable_shared_from_this&) { } __enable_shared_from_this& operator=(const __enable_shared_from_this&) { return *this; } ~__enable_shared_from_this() { } public: __shared_ptr<_tp, _lp> shared_from_this() { return __shared_ptr<_tp, _lp>(this->_m_weak_this); } __shared_ptr shared_from_this() const { return __shared_ptr(this->_m_weak_this); } private: template void _m_weak_assign(_tp1* __p, const __shared_count<_lp>& __n) const { _m_weak_this._m_assign(__p, __n); } template friend void __enable_shared_from_this_helper(const __shared_count<_lp>& __pn, const __enable_shared_from_this* __pe, const _tp1* __px) { if (__pe != 0) __pe->_m_weak_assign(const_cast<_tp1*>(__px), __pn); } mutable __weak_ptr<_tp, _lp> _m_weak_this; }; // the actual shared_ptr, with forwarding constructors and // assignment operators. template class shared_ptr : public __shared_ptr<_tp> { public: shared_ptr() : __shared_ptr<_tp>() { } template explicit shared_ptr(_tp1* __p) : __shared_ptr<_tp>(__p) { } template shared_ptr(_tp1* __p, _deleter __d) : __shared_ptr<_tp>(__p, __d) { } template shared_ptr(const shared_ptr<_tp1>& __r) : __shared_ptr<_tp>(__r) { } template explicit shared_ptr(const weak_ptr<_tp1>& __r) : __shared_ptr<_tp>(__r) { } #if (__cplusplus < 201103l) || _glibcxx_use_deprecated template explicit shared_ptr(std::auto_ptr<_tp1>& __r) : __shared_ptr<_tp>(__r) { } #endif template shared_ptr(const shared_ptr<_tp1>& __r, __static_cast_tag) : __shared_ptr<_tp>(__r, __static_cast_tag()) { } template shared_ptr(const shared_ptr<_tp1>& __r, __const_cast_tag) : __shared_ptr<_tp>(__r, __const_cast_tag()) { } template shared_ptr(const shared_ptr<_tp1>& __r, __dynamic_cast_tag) : __shared_ptr<_tp>(__r, __dynamic_cast_tag()) { } template shared_ptr& operator=(const shared_ptr<_tp1>& __r) // never throws { this->__shared_ptr<_tp>::operator=(__r); return *this; } #if (__cplusplus < 201103l) || _glibcxx_use_deprecated template shared_ptr& operator=(std::auto_ptr<_tp1>& __r) { this->__shared_ptr<_tp>::operator=(__r); return *this; } #endif }; // 2.2.3.8 shared_ptr specialized algorithms. template inline void swap(__shared_ptr<_tp>& __a, __shared_ptr<_tp>& __b) { __a.swap(__b); } template inline shared_ptr<_tp> static_pointer_cast(const shared_ptr<_tp1>& __r) { return shared_ptr<_tp>(__r, __static_cast_tag()); } template inline shared_ptr<_tp> const_pointer_cast(const shared_ptr<_tp1>& __r) { return shared_ptr<_tp>(__r, __const_cast_tag()); } template inline shared_ptr<_tp> dynamic_pointer_cast(const shared_ptr<_tp1>& __r) { return shared_ptr<_tp>(__r, __dynamic_cast_tag()); } // the actual weak_ptr, with forwarding constructors and // assignment operators. template class weak_ptr : public __weak_ptr<_tp> { public: weak_ptr() : __weak_ptr<_tp>() { } template weak_ptr(const weak_ptr<_tp1>& __r) : __weak_ptr<_tp>(__r) { } template weak_ptr(const shared_ptr<_tp1>& __r) : __weak_ptr<_tp>(__r) { } template weak_ptr& operator=(const weak_ptr<_tp1>& __r) // never throws { this->__weak_ptr<_tp>::operator=(__r); return *this; } template weak_ptr& operator=(const shared_ptr<_tp1>& __r) // never throws { this->__weak_ptr<_tp>::operator=(__r); return *this; } shared_ptr<_tp> lock() const // never throws { #ifdef __gthreads if (this->expired()) return shared_ptr<_tp>(); __try { return shared_ptr<_tp>(*this); } __catch(const bad_weak_ptr&) { return shared_ptr<_tp>(); } #else return this->expired() ? shared_ptr<_tp>() : shared_ptr<_tp>(*this); #endif } }; template class enable_shared_from_this { protected: enable_shared_from_this() { } enable_shared_from_this(const enable_shared_from_this&) { } enable_shared_from_this& operator=(const enable_shared_from_this&) { return *this; } ~enable_shared_from_this() { } public: shared_ptr<_tp> shared_from_this() { return shared_ptr<_tp>(this->_m_weak_this); } shared_ptr shared_from_this() const { return shared_ptr(this->_m_weak_this); } private: template void _m_weak_assign(_tp1* __p, const __shared_count<>& __n) const { _m_weak_this._m_assign(__p, __n); } template friend void __enable_shared_from_this_helper(const __shared_count<>& __pn, const enable_shared_from_this* __pe, const _tp1* __px) { if (__pe != 0) __pe->_m_weak_assign(const_cast<_tp1*>(__px), __pn); } mutable weak_ptr<_tp> _m_weak_this; }; _glibcxx_end_namespace_version } } #endif // _tr1_shared_ptr_h其主要的类关系如下所示(省略相关的类模板参数):
从上面的类图我们可以很清楚的看出shared_ptr内部,含有一个指向被管理对象(managed object)t的指针以及一个__shared_count对象,__shared_count对象包含一个指向管理模块(manager object)的基类指针,管理模块(manager object)由具有原子属性的use_count和weak_count、指向被管理对象(managed object)t的指针、以及用来销毁被管理对象的deleter组成:
weak_ptr内部组成与shared_ptr类似,内部同样含有一个指向被管理对象t的指针以及一个__weak_count对象:
很明显,shared_ptr与weak_ptr的差异主要是由__shared_ptr与__weak_ptr体现出来的,而__shared_ptr与__weak_ptr的差异则主要是由__shared_count与__weak_count体现出来。
通过shared_ptr的构造函数,可以发现,在创建一个shared_ptr的时候需要一个new 操作符返回的被管理对象的地址来初始化shared_ptr, shared_ptr在内部会构建一个_shared_count对象,由_shared_count对象的构造函数可知,创建shared_ptr的时候也动态的创建了一个管理对象_sp_counted_base_impl:
template explicit __shared_ptr(_tp1* __p) : _m_ptr(__p), _m_refcount(__p) { __glibcxx_function_requires(_convertibleconcept<_tp1*, _tp*>) typedef int _iscomplete[sizeof(_tp1)]; __enable_shared_from_this_helper(_m_refcount, __p, __p); } template __shared_count(_ptr __p) : _m_pi(0) { __try { typedef typename std::tr1::remove_pointer<_ptr>::type _tp; _m_pi = new _sp_counted_base_impl<_ptr, _sp_deleter<_tp>, _lp>(__p, _sp_deleter<_tp>()); } __catch(...) { delete __p; __throw_exception_again; } }
由上面我们不难发现,shared_ptr内部包含一个指向被管理对象的指针_m_ptr,_sp_counted_base_impl内部也含有一个指向被管理对象的指针_m_ptr, 它们是不是重复多余了呢?实际上没有。这首先要从shared_ptr的拷贝构造或者赋值构造说起,当一个shared_ptr对象sp2是由sp1拷贝构或者赋值构造得来的时候,实际上构造完成后sp1内部的__shared_count对象包含的指向管理对象的指针与sp2内部的__shared_count对象包含的指向管理对象的指针是相等的,也就是说当多个shared_ptr对象来管理同一个对象时,它们共同使用同一个动态分配的管理对象。这可以从下面的__share_ptr的构造函数和__shared_count的构造函数清楚的看出。
template __shared_ptr(const __shared_ptr<_tp1, _lp>& __r) : _m_ptr(__r._m_ptr), _m_refcount(__r._m_refcount) // never throws {__glibcxx_function_requires(_convertibleconcept<_tp1*, _tp*>)} __shared_count& operator=(const __shared_count& __r) // nothrow { _sp_counted_base<_lp>* __tmp = __r._m_pi; if (__tmp != _m_pi) { if (__tmp != 0) __tmp->_m_add_ref_copy(); if (_m_pi != 0) _m_pi->_m_release(); _m_pi = __tmp; } }
上面说说当多个shared_ptr对象来管理同一个对象时,它们共同使用同一个动态分配的管理对象,为什么上面给出的_shared_count的构造函数中出现了__tmp != _m_pi的情形呢?这在sp2未初始化时(_m_pi为0,_r._m_pi非0)便是这样的情形。
更一般的,也可以考虑这样的情形:shared_ptr实例sp1开始指向类a的实例对象a1, 另外一个shared_ptr实例sp2指向类a的实例对象a2(a1 != a2),这样当把sp2赋值给sp1时便会出现上面的情形。假设初始时有且仅有一个sp1指向a1, 有且仅有一个sp2指向a2; 则赋值结束时sp1与sp2均指向a2, 没有指针指向a1, sp1指向的a1以及其对应的管理对象均应该被析构。这在上面的代码中我们可以很清楚的看到:因为__tmp != _m_pi, __tmp->_m_add_ref_copy()将会增加a2的use_count的引用计数;由于a1内部的_m_pi != 0, 将会调用其_m_release()函数:
//************_sp_counted_base*****************// void _m_add_ref_copy() { __gnu_cxx::__atomic_add_dispatch(&_m_use_count, 1); } //************_sp_counted_base*****************// void _m_release() // nothrow { // be race-detector-friendly. for more info see bits/c++config. _glibcxx_synchronization_happens_before(&_m_use_count); if (__gnu_cxx::__exchange_and_add_dispatch(&_m_use_count, -1) == 1) { _glibcxx_synchronization_happens_after(&_m_use_count); _m_dispose(); // there must be a memory barrier between dispose() and destroy() // to ensure that the effects of dispose() are observed in the // thread that runs destroy(). // see https://gcc.gnu.org/ml/libstdc++/2005-11/msg00136.html if (_mutex_base<_lp>::_s_need_barriers) { __atomic_thread_fence (__atomic_acq_rel); } // be race-detector-friendly. for more info see bits/c++config. _glibcxx_synchronization_happens_before(&_m_weak_count); if (__gnu_cxx::__exchange_and_add_dispatch(&_m_weak_count, -1) == 1) { _glibcxx_synchronization_happens_after(&_m_weak_count); _m_destroy(); } } } //************_sp_counted_base*****************// // called when _m_use_count drops to zero, to release the resources // managed by *this. virtual void _m_dispose() = 0; // nothrow // called when _m_weak_count drops to zero. virtual void _m_destroy() // nothrow { delete this; } //************_sp_counted_base_impl*************// virtual void _m_dispose() // nothrow { _m_del(_m_ptr); }
_m_release()函数首先对a1的use_count减去1,并对比减操作之前的值,如果减之前是1,说明减后是0,a1没有shared_ptr指针指向它了,应该将a1对象销毁,于是调用_m_dispose()函数销毁a1; 同时对a1的weak_count减去1,也对比减操作之前的值,如果减之前是1,说明减后是0,a1没有weak_ptr指向它了,应该将管理对象销毁,于是调用_m_destroy()销毁了管理对象。
从上面可以看出,use_count主要用来标记被管理对象的生命周期,weak_count主要用来标记管理对象的生命周期。
当一个shared_ptr超出作用域被销毁时,它也会调用其_share_count的_m_release()对use_count和weak_count进行自减并判断是否需要释放资源:
~__shared_count() // nothrow { if (_m_pi != 0) _m_pi->_m_release(); }
对于weak_ptr, 其对应的__weak_count的拷贝构造函数如下
//************_sp_counted_base*****************// void _m_weak_add_ref() // nothrow { __gnu_cxx::__atomic_add_dispatch(&_m_weak_count, 1); } //************_sp_counted_base*****************// void _m_weak_release() // nothrow { // be race-detector-friendly. for more info see bits/c++config. _glibcxx_synchronization_happens_before(&_m_weak_count); if (__gnu_cxx::__exchange_and_add_dispatch(&_m_weak_count, -1) == 1) { _glibcxx_synchronization_happens_after(&_m_weak_count); if (_mutex_base<_lp>::_s_need_barriers) { // see _m_release(), // destroy() must observe results of dispose() __atomic_thread_fence (__atomic_acq_rel); } _m_destroy(); } } __weak_count<_lp>& operator=(const __shared_count<_lp>& __r) // nothrow { _sp_counted_base<_lp>* __tmp = __r._m_pi; if (__tmp != 0) __tmp->_m_weak_add_ref(); if (_m_pi != 0) _m_pi->_m_weak_release(); _m_pi = __tmp; return *this; } __weak_count<_lp>& operator=(const __weak_count<_lp>& __r) // nothrow { _sp_counted_base<_lp>* __tmp = __r._m_pi; if (__tmp != 0) __tmp->_m_weak_add_ref(); if (_m_pi != 0) _m_pi->_m_weak_release(); _m_pi = __tmp; return *this; } ~__weak_count() // nothrow { if (_m_pi != 0) _m_pi->_m_weak_release(); }
从上面可以看出,__weak_count相关的赋值拷贝以及析构函数均只会影响到weak_count的值,当weak_count为0时,释放管理对象。
上一篇: 原理篇 之 aspx、aspx.cs