【python pytorch】Pytorch 基础知识
程序员文章站
2024-01-30 10:51:46
...
包含知识点:
- 张量
- 数学操作
- 数理统计
- 比较操作
#-*-coding:utf-8-*-
import numpy as np
np.set_printoptions(suppress=True)
import torch
# 构造一个4*5 的矩阵
z=torch.Tensor(4,5)
print(z)
# 两个矩阵进行加法操作
y=torch.rand(4,5)
print(z+y)
# 另一种表示
print(torch.add(z,y))
# 将tensor 转换为numpy
b=y.numpy()
print(b)
# 数学操作绝对值
kk=torch.abs(torch.FloatTensor([-4,6,90]))
print(kk)
# 均值(行操作)
print(torch.mean(kk,0))
# 比较操作
m1=torch.equal(torch.Tensor([1,2]),torch.Tensor([1,2]))
m2=torch.equal(torch.Tensor([1,2]),torch.Tensor([2,2]))
m3=torch.eq(torch.Tensor([1,2]),torch.Tensor([2,2]))
m4=torch.gt(torch.Tensor([1,2]),torch.Tensor([2,2]))
print(m1)
print(m2)
print(m3)
print(m4)
运行结果:
tensor([[ 0.0000, 0.0000, 0.0000, 0.0000, -3.7296],
[ 0.0000, -8.2118, 0.0000, 0.0000, 0.0000],
[ 0.0000, 0.0000, -4.0750, 0.0000, -8.2119],
[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]])
tensor([[ 0.3490, 0.7795, 0.1428, 0.2517, -3.1552],
[ 0.0427, -7.5753, 0.1780, 0.7305, 0.7264],
[ 0.2967, 0.2977, -3.8018, 0.2856, -8.0059],
[ 0.9123, 0.6403, 0.8935, 0.9008, 0.6926]])
tensor([[ 0.3490, 0.7795, 0.1428, 0.2517, -3.1552],
[ 0.0427, -7.5753, 0.1780, 0.7305, 0.7264],
[ 0.2967, 0.2977, -3.8018, 0.2856, -8.0059],
[ 0.9123, 0.6403, 0.8935, 0.9008, 0.6926]])
[[0.34903067 0.7795371 0.14277744 0.25165677 0.57442063]
[0.04269707 0.63649714 0.17801785 0.73047435 0.72639245]
[0.29670775 0.29770297 0.27317053 0.28561223 0.20602047]
[0.91231096 0.6403226 0.8934667 0.90082955 0.69256335]]
tensor([ 4., 6., 90.])
tensor(33.3333)
True
False
tensor([ 0, 1], dtype=torch.uint8)
tensor([ 0, 0], dtype=torch.uint8)
Process finished with exit code 0
上一篇: 功能:js 点击复制内容功能