欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

darknet-yolov3训练自己的数据

程序员文章站 2024-01-25 08:41:52
注意:本篇博客直接使用VOC2007数据集1.数据集Labelimg软件构建数据集,Labelimg项目地址:https://github.com/tzutalin/labelImg,Labelimg快捷键:Ctrl + uLoad all of the images from a directoryCtrl + rChange the default annotation target dirCtrl + sSaveCtrl + dCopy t...

注意:本篇博客直接使用VOC2007数据集

1.数据集

Labelimg软件构建数据集,Labelimg项目地址:https://github.com/tzutalin/labelImg,Labelimg快捷键:

Ctrl + u Load all of the images from a directory
Ctrl + r Change the default annotation target dir
Ctrl + s Save
Ctrl + d Copy the current label and rect box
Space Flag the current image as verified
w Create a rect box
d Next image
a Previous image
del Delete the selected rect box
Ctrl++ Zoom in
Ctrl-- Zoom out
↑→↓← Keyboard arrows to move selected rect box

voc2007数据集目录结构 :

               ----voc2007

                           ----Annotations

                           ----ImageSets

                                        ----Main

                           ----JPEGImages

在voc2007同目录下新建makeTXT.py,将数据集划分,并且在Main文件夹下构建4个TXT:train.txt,test.txt,trainval.txt,val.txt。代码如下:

import os
import random

trainval_percent = 0.8
train_percent = 0.8
xmlfilepath = 'VOC2007\Annotations'
txtsavepath = 'VOC2007\ImageSets\Main'
total_xml = os.listdir(xmlfilepath)

num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)

ftrainval = open('VOC2007/ImageSets/Main/trainval.txt', 'w')
ftest = open('VOC2007/ImageSets/Main/test.txt', 'w')
ftrain = open('VOC2007/ImageSets/Main/train.txt', 'w')
fval = open('VOC2007/ImageSets/Main/val.txt', 'w')

for i in list:
    name = total_xml[i][:-4] + '\n'
    if i in trainval:
        ftrainval.write(name)
        if i in train:
            ftrain.write(name)
        else:
            fval.write(name)
    else:
        ftest.write(name)

ftrainval.close()
ftrain.close()
fval.close()

在 voc2007同目录下新建voc_labels.py,生成labels。代码如下:

import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join

#sets=[('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test')]

sets=[('2007', 'train'), ('2007', 'val'), ('2007', 'test')]

classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]


def convert(size, box):
    dw = 1./(size[0])
    dh = 1./(size[1])
    x = (box[0] + box[1])/2.0 - 1
    y = (box[2] + box[3])/2.0 - 1
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x*dw
    w = w*dw
    y = y*dh
    h = h*dh
    return (x,y,w,h)

def convert_annotation(year, image_id):
    #in_file = open('VOCdevkit/VOC%s/Annotations/%s.xml'%(year, image_id))
    #out_file = open('VOCdevkit/VOC%s/labels/%s.txt'%(year, image_id), 'w')
    in_file = open('VOC%s/Annotations/%s.xml' % (year, image_id))
    out_file = open('VOC%s/labels/%s.txt'%(year, image_id), 'w')
    tree=ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)

    for obj in root.iter('object'):
        difficult = obj.find('difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult)==1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
        bb = convert((w,h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')

wd = getcwd()
'''
for year, image_set in sets:
    if not os.path.exists('VOCdevkit/VOC%s/labels/'%(year)):
        os.makedirs('VOCdevkit/VOC%s/labels/'%(year))
    image_ids = open('VOCdevkit/VOC%s/ImageSets/Main/%s.txt'%(year, image_set)).read().strip().split()
    list_file = open('%s_%s.txt'%(year, image_set), 'w')
    for image_id in image_ids:
        list_file.write('%s/VOCdevkit/VOC%s/JPEGImages/%s.jpg\n'%(wd, year, image_id))
        convert_annotation(year, image_id)
    list_file.close()
os.system("cat 2007_train.txt 2007_val.txt 2012_train.txt 2012_val.txt > train.txt")
os.system("cat 2007_train.txt 2007_val.txt 2007_test.txt 2012_train.txt 2012_val.txt > train.all.txt")
'''
for year, image_set in sets:
    if not os.path.exists('VOC%s/labels/'%(year)):
        os.makedirs('VOC%s/labels/'%(year))
    image_ids = open('VOC%s/ImageSets/Main/%s.txt'%(year, image_set)).read().strip().split()
    list_file = open('%s_%s.txt'%(year, image_set), 'w')
    for image_id in image_ids:
        list_file.write('%s/VOC%s/JPEGImages/%s.jpg\n'%(wd, year, image_id))
        convert_annotation(year, image_id)
    list_file.close()

os.system("cat 2007_train.txt 2007_val.txt  > train.txt")
os.system("cat 2007_train.txt 2007_val.txt 2007_test.txt  > train.all.txt")

 

2.环境

(1)git clone https://github.com/AlexeyAB/darknet

(2)cd darknet

(3)pip install -r requirements.txt

(4)make

(5)在项目根目录下新建weights文件夹,下载权重文件,将其放入weights文件夹中。

(6)测试:./darknet detect cfg/yolov3.cfg weights/yolov3.weights data/dog.jpg    或     ./darknet detector test cfg/coco.data cfg/yolov3.cfg yolov3.weights data/dog.jpg

3.训练模型

(1)下载darknet53.conv.74,将darknet53.conv.74放入其中。

(2)在data目录下新建**.name文件,存放你的数据集类别名称。本文用coco.names:

aeroplane
bicycle
bird
boat
bottle
bus
car
cat
chair
cow
diningtable
dog
horse
motorbike
person
pottedplant
sheep
sofa
train
tvmonitor

(3)在data目录下新建**.data文件,本文用coco.data:

classes = 20#类别数
train = data\2007_train.txt#voc_labels.py生成的训练集的位置
valid = data\2007_test.txt
names = data\coco.names
backup = backup\

(4) 更新cfg文件的classes,本文使用的classes=20。yolo上一卷积层的filters=3*(classes+5),其中5代表的是4个坐标+1个置信度。

(5)开始训练:python ./darknet detector train cfg/voc.data cfg/yolov3-voc.cfg weights/darknet53.conv.74

注意:max_batches = 50200 ### 迭代次数

 

本文地址:https://blog.csdn.net/qqyouhappy/article/details/107139501