darknet-yolov3训练自己的数据
注意:本篇博客直接使用VOC2007数据集
1.数据集
Labelimg软件构建数据集,Labelimg项目地址:https://github.com/tzutalin/labelImg,Labelimg快捷键:
Ctrl + u | Load all of the images from a directory |
Ctrl + r | Change the default annotation target dir |
Ctrl + s | Save |
Ctrl + d | Copy the current label and rect box |
Space | Flag the current image as verified |
w | Create a rect box |
d | Next image |
a | Previous image |
del | Delete the selected rect box |
Ctrl++ | Zoom in |
Ctrl-- | Zoom out |
↑→↓← | Keyboard arrows to move selected rect box |
voc2007数据集目录结构 :
----voc2007
----Annotations
----ImageSets
----Main
----JPEGImages
在voc2007同目录下新建makeTXT.py,将数据集划分,并且在Main文件夹下构建4个TXT:train.txt,test.txt,trainval.txt,val.txt。代码如下:
import os
import random
trainval_percent = 0.8
train_percent = 0.8
xmlfilepath = 'VOC2007\Annotations'
txtsavepath = 'VOC2007\ImageSets\Main'
total_xml = os.listdir(xmlfilepath)
num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)
ftrainval = open('VOC2007/ImageSets/Main/trainval.txt', 'w')
ftest = open('VOC2007/ImageSets/Main/test.txt', 'w')
ftrain = open('VOC2007/ImageSets/Main/train.txt', 'w')
fval = open('VOC2007/ImageSets/Main/val.txt', 'w')
for i in list:
name = total_xml[i][:-4] + '\n'
if i in trainval:
ftrainval.write(name)
if i in train:
ftrain.write(name)
else:
fval.write(name)
else:
ftest.write(name)
ftrainval.close()
ftrain.close()
fval.close()
在 voc2007同目录下新建voc_labels.py,生成labels。代码如下:
import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
#sets=[('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test')]
sets=[('2007', 'train'), ('2007', 'val'), ('2007', 'test')]
classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
def convert(size, box):
dw = 1./(size[0])
dh = 1./(size[1])
x = (box[0] + box[1])/2.0 - 1
y = (box[2] + box[3])/2.0 - 1
w = box[1] - box[0]
h = box[3] - box[2]
x = x*dw
w = w*dw
y = y*dh
h = h*dh
return (x,y,w,h)
def convert_annotation(year, image_id):
#in_file = open('VOCdevkit/VOC%s/Annotations/%s.xml'%(year, image_id))
#out_file = open('VOCdevkit/VOC%s/labels/%s.txt'%(year, image_id), 'w')
in_file = open('VOC%s/Annotations/%s.xml' % (year, image_id))
out_file = open('VOC%s/labels/%s.txt'%(year, image_id), 'w')
tree=ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult)==1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
bb = convert((w,h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
wd = getcwd()
'''
for year, image_set in sets:
if not os.path.exists('VOCdevkit/VOC%s/labels/'%(year)):
os.makedirs('VOCdevkit/VOC%s/labels/'%(year))
image_ids = open('VOCdevkit/VOC%s/ImageSets/Main/%s.txt'%(year, image_set)).read().strip().split()
list_file = open('%s_%s.txt'%(year, image_set), 'w')
for image_id in image_ids:
list_file.write('%s/VOCdevkit/VOC%s/JPEGImages/%s.jpg\n'%(wd, year, image_id))
convert_annotation(year, image_id)
list_file.close()
os.system("cat 2007_train.txt 2007_val.txt 2012_train.txt 2012_val.txt > train.txt")
os.system("cat 2007_train.txt 2007_val.txt 2007_test.txt 2012_train.txt 2012_val.txt > train.all.txt")
'''
for year, image_set in sets:
if not os.path.exists('VOC%s/labels/'%(year)):
os.makedirs('VOC%s/labels/'%(year))
image_ids = open('VOC%s/ImageSets/Main/%s.txt'%(year, image_set)).read().strip().split()
list_file = open('%s_%s.txt'%(year, image_set), 'w')
for image_id in image_ids:
list_file.write('%s/VOC%s/JPEGImages/%s.jpg\n'%(wd, year, image_id))
convert_annotation(year, image_id)
list_file.close()
os.system("cat 2007_train.txt 2007_val.txt > train.txt")
os.system("cat 2007_train.txt 2007_val.txt 2007_test.txt > train.all.txt")
2.环境
(1)git clone https://github.com/AlexeyAB/darknet
(2)cd darknet
(3)pip install -r requirements.txt
(4)make
(5)在项目根目录下新建weights文件夹,下载权重文件,将其放入weights文件夹中。
(6)测试:./darknet detect cfg/yolov3.cfg weights/yolov3.weights data/dog.jpg 或 ./darknet detector test cfg/coco.data cfg/yolov3.cfg yolov3.weights data/dog.jpg
3.训练模型
(1)下载darknet53.conv.74,将darknet53.conv.74放入其中。
(2)在data目录下新建**.name文件,存放你的数据集类别名称。本文用coco.names:
aeroplane
bicycle
bird
boat
bottle
bus
car
cat
chair
cow
diningtable
dog
horse
motorbike
person
pottedplant
sheep
sofa
train
tvmonitor
(3)在data目录下新建**.data文件,本文用coco.data:
classes = 20#类别数
train = data\2007_train.txt#voc_labels.py生成的训练集的位置
valid = data\2007_test.txt
names = data\coco.names
backup = backup\
(4) 更新cfg文件的classes,本文使用的classes=20。yolo上一卷积层的filters=3*(classes+5),其中5代表的是4个坐标+1个置信度。
(5)开始训练:python ./darknet detector train cfg/voc.data cfg/yolov3-voc.cfg weights/darknet53.conv.74
注意:max_batches = 50200 ### 迭代次数
本文地址:https://blog.csdn.net/qqyouhappy/article/details/107139501
推荐阅读
-
darknet-yolov3训练自己的数据
-
求问小弟我自己写的这个DB类,错哪了,插不进数据
-
网站优化分之分析竞争对手的数据来提高自己网站的排名
-
制作用于图像语义分割训练的标签数据【图像分割】【labelme】
-
企业如何更好地保护自己的数据
-
【企业安全】企业如何在互联网市场中更好地保护自己的数据
-
自己编码实现数据库的映射实体的代码生成器_MySQL
-
MAC下deeplab_V3+修改“local_test_mobilenetv2.sh”来测试自己的数据
-
新手在开发自己博客时如何设计数据库,文件的归类,求传授经验。
-
ASP.NET网络爬虫小研究 HtmlAgilityPack基础,爬取数据保存在数据库中再显示再自己的网页中