欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

pandas实现分类汇总--小计,总计

程序员文章站 2024-01-24 15:32:40
...

有一批数据需要分类汇总和总计,看了一下pandas的groupby,可以实现。具体思路:先分组,分组后计算改分类的汇总小计,然后对dataframe进行拼接;分类汇总计算好了之后,计算总体的汇总,然后在进行拼接

具体代码:

"""
pandas 实现分类汇总 总计
"""
import os
import sys

BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))

sys.path.append(BASE_DIR)

import pandas as pd


def gen_pivot_table(df, calculate_fields, special_fields, groupby_fields):
    """
    :param df: 
    :param calculate_fields: 需要计算的字段
    :param special_fields: 需要进行特殊计算的字段  两列比值 两列之和/差 等 
    :param groupby_fields: 需要分组的字段
    :return: 
    """
    last_total_df = calculation_total(df, calculate_fields, special_fields, name=u"总计")

    print("last_total_df: {}\n".format(last_total_df))

    sub_total_df = calculation_sub_total(df, groupby_fields, calculate_fields, special_fields)

    print("sub_total_df: {}\n".format(sub_total_df))

    new_df = pd.concat([sub_total_df, last_total_df], axis=0)

    # new_df["累计播放时间(秒)"] = new_df["累计播放时间(秒)"].apply(seconds_2_minutes)
    new_df["人均播放时长(秒)"] = new_df["人均播放时长(秒)"].apply(seconds_2_minutes)
    new_df.to_excel(os.path.join(BASE_DIR, u"分类汇总.xlsx"), index=False, encoding="utf8")


def calculation_total(df, calculation_fields, specical_fields, name=u"小计"):
    """
    获取df的总计
    columns: 需要计算的列
    position: 总计 字符串出现的位置
    """
    records = []

    columns = df.columns.tolist()
    column_len = len(columns)

    records.append(name)
    records.append('')

    for field in calculation_fields:
        val = df[field].sum()
        records.append(val)

    if specical_fields:
        for item in specical_fields:
            first, second = item
            val = round(df[first].sum()/df[second].sum(), 1)
            records.append(val)

    total_records = []
    total_records.append(records)
    total_records.append([''] * column_len)

    total_df = pd.DataFrame()
    total_df = total_df.from_records(total_records, columns=columns)
    return total_df


def calculation_sub_total(df, gfields, calculation_fields, specical_fields):
    """
    分类汇总
    :param df: 
    :return: 
    """
    total_df = pd.DataFrame()
    group = df.groupby(gfields)
    for group_name, val in group:
        new_df = calculation_total(val, calculation_fields, specical_fields, name=u"小计")
        total_df = pd.concat([total_df, val, new_df], axis=0)
    return total_df


def seconds_2_minutes(number):
    """
    秒转成分 
    """
    try:
        number = int(number)
    except:
        return number

    if number < 60:
        return "{}秒".format(number)

    minute = number//60
    seconds = number - minute * 60
    if seconds == 0:
        return "{}分".format(minute)

    return "{}分{}秒".format(minute, seconds)


if __name__ == "__main__":
    calculate_fields = ["页面展示pv", "页面展示uv", "播放点击按钮人数", "视频播放次数", "完整播放次数",
     "累计播放时间(秒)"]

    special_fields = [("累计播放时间(秒)", "播放点击按钮人数")]

    groupby_fields = ["视频名称"]
    file_path = os.path.join(BASE_DIR, u"视频题目统计数据.xlsx")

    df = pd.read_excel(file_path)
    gen_pivot_table(df, calculate_fields, special_fields, groupby_fields)

原始数据:
pandas实现分类汇总--小计,总计
处理之后的数据:
pandas实现分类汇总--小计,总计

相关标签: 数据处理 pandas