欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

ROS机器人Diego 1#整合Tensorflow MNIST,玩数字识别

程序员文章站 2024-01-23 12:21:46
...

机器学习中最经典的例子就是MNIST通过图片来识别0~9的数字,这篇文章将介绍如何将基于Tensorflow MNIST整合到Diego1#机器人中作为一个节点,此节点将订阅Image消息,通过MNIST识别后将结果发布消息给讯飞语音节点,讯飞语音节点会告诉我们识别的数字是几。

相关源代码已经上传到本人的github。

1. 安装Tensorflow

只需一句命令即可安装

pip install tensorflow

官方有4中安装方法,在这里选择直接安装的方式

2. 创建diego_tensorflow_mnist 包

catkin_create_pkg diego_tensorflow_mnist std_msgs rospy roscpp cv_bridge

ROS机器人Diego 1#整合Tensorflow MNIST,玩数字识别

在diego_tensorflow_mnist目录下创建scripts和launch目录
ROS机器人Diego 1#整合Tensorflow MNIST,玩数字识别
scripts目录用于存放python的源代码
launch目录用于存放ROS launch文件

下载相关代码到scripts目录
ROS机器人Diego 1#整合Tensorflow MNIST,玩数字识别

3.ROS节点

有关nnist的算法都已经写好,我们只需要调用其中的功能封装成ROS节点即可,有关封装的代码请见tensorflow_in_ros_mnist.py

#!/usr/bin/env python

import rospy
from sensor_msgs.msg import Image
from std_msgs.msg import Int16
from std_msgs.msg import String
from cv_bridge import CvBridge
import cv2
import numpy as np
import tensorflow as tf


def weight_variable(shape):
  initial = tf.truncated_normal(shape, stddev=0.1)
  return tf.Variable(initial)

def bias_variable(shape):
  initial = tf.constant(0.1, shape=shape)
  return tf.Variable(initial)

def conv2d(x, W):
  return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], 
                      padding='SAME')

def max_pool_2x2(x):
  return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                        strides=[1, 2, 2, 1], padding='SAME')


def makeCNN(x,keep_prob):
    # --- define CNN model
    W_conv1 = weight_variable([5, 5, 1, 32])
    b_conv1 = bias_variable([32])
    h_conv1 = tf.nn.relu(conv2d(x, W_conv1) + b_conv1)

    h_pool1 = max_pool_2x2(h_conv1)

    W_conv2 = weight_variable([3, 3, 32, 64])
    b_conv2 = bias_variable([64])
    h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)

    h_pool2 = max_pool_2x2(h_conv2)

    W_fc1 = weight_variable([7 * 7 * 64, 1024])
    b_fc1 = bias_variable([1024])
    h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

    W_fc2 = weight_variable([1024, 10])
    b_fc2 = bias_variable([10])

    y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

    return y_conv



class RosTensorFlow():
    def __init__(self):

    rospy.init_node('rostensorflow')

    # Set the shutdown function (stop the robot)
        rospy.on_shutdown(self.shutdown)

        model_path = rospy.get_param("~model_path", "")
        image_topic = rospy.get_param("~image_topic", "")

        self._cv_bridge = CvBridge()

        self.x = tf.placeholder(tf.float32, [None,28,28,1], name="x")
        self.keep_prob = tf.placeholder("float")
        self.y_conv = makeCNN(self.x,self.keep_prob)

        self._saver = tf.train.Saver()
        self._session = tf.InteractiveSession()

        init_op = tf.global_variables_initializer()
        self._session.run(init_op)

        self._saver.restore(self._session, model_path+"/model.ckpt")

        self._sub = rospy.Subscriber(image_topic, Image, self.callback, queue_size=1)
        #self._pub = rospy.Publisher('result', Int16, queue_size=1)
        self._pub = rospy.Publisher('xfwords', String, queue_size=1)


    def callback(self, image_msg):
        cv_image = self._cv_bridge.imgmsg_to_cv2(image_msg, "bgr8")
        cv_image_gray = cv2.cvtColor(cv_image, cv2.COLOR_RGB2GRAY)
        ret,cv_image_binary = cv2.threshold(cv_image_gray,128,255,cv2.THRESH_BINARY_INV)
        cv_image_28 = cv2.resize(cv_image_binary,(28,28))
        np_image = np.reshape(cv_image_28,(1,28,28,1))
        predict_num = self._session.run(self.y_conv, feed_dict={self.x:np_image,self.keep_prob:1.0})
        answer = np.argmax(predict_num,1)
        rospy.loginfo('%d' % answer)
        self._pub.publish(str(answer))
        rospy.sleep(3) 

    def shutdown(self):
        rospy.loginfo("Stopping the tensorflow nnist...")
        rospy.sleep(1)   

if __name__ == '__main__':
    try:
        RosTensorFlow()
        rospy.spin()
    except rospy.ROSInterruptException:
        rospy.loginfo("RosTensorFlow has started.")


有关MNIST具体算法实现部分网上有很多教程,这里只说明与ROS整合部分

class RosTensorFlow():
    def __init__(self):

    rospy.init_node('rostensorflow')

    # Set the shutdown function (stop the robot)
        rospy.on_shutdown(self.shutdown)

        model_path = rospy.get_param("~model_path", "")
        image_topic = rospy.get_param("~image_topic", "")

在RosTensorFlow类的开始部分,是标准的节点定义方法,model_path变量用于获取launch文件中定义的model的路径,image_topic变量用于获取launch文件中定义image主题

        self._sub = rospy.Subscriber(image_topic, Image, self.callback, queue_size=1)

以上这段代码是让该节点订阅image topic,并且知道回调函数

        self._pub = rospy.Publisher('xfwords', String, queue_size=1)

以上这段代码定义将发布讯飞语音主题,xfwords

    def callback(self, image_msg):
        cv_image = self._cv_bridge.imgmsg_to_cv2(image_msg, "bgr8")
        cv_image_gray = cv2.cvtColor(cv_image, cv2.COLOR_RGB2GRAY)
        ret,cv_image_binary = cv2.threshold(cv_image_gray,128,255,cv2.THRESH_BINARY_INV)
        cv_image_28 = cv2.resize(cv_image_binary,(28,28))
        np_image = np.reshape(cv_image_28,(1,28,28,1))
        predict_num = self._session.run(self.y_conv, feed_dict={self.x:np_image,self.keep_prob:1.0})
        answer = np.argmax(predict_num,1)
        rospy.loginfo('%d' % answer)
        self._pub.publish(str(answer))
        rospy.sleep(3) 

主要的处理都在callback回调函数中,首先将从image主题中经过一系列的处理转换成numpy数组,然后调用tensorflow进行识别,将可能的结果过放在predict_num数组中,取其中最有可能的值,就是结果,将结果作为讯飞语音topic发送出去

4.launch文件

在launch文件夹下创建一个名为nnist.launch的文件,文件内容如下:

<launch>

    <node pkg="diego_tensorflow_nnist" name="tensorflow_in_ros_mnist" type="tensorflow_in_ros_mnist.py" output="screen">
        <param name="image_topic" value="/usb_cam/image_raw" />
        <param name="model_path" value="$(find diego_tensorflow_nnist)/scripts/model" />
    </node> 
</launch>

相关的主题,和路径可以在这里修改

5.启动节点

roscore
rosrun xfei_asr tts_subscribe_speak
roslaunch usb_cam usb_cam-test.launch
roslaunch diego_tensorflow_nnist nest.launch

这里我们用到了usb_cam,有关此包的使用请见http://wiki.ros.org/usb_cam

启动后我们就可以在纸上面写几个数字,放在摄像头前,diego1#会告诉你数字是多少。