BZOJ3675: [Apio2014]序列分割(斜率优化)
Submit: 4186 Solved: 1629
[][][]
Description
Input
输入第一行包含两个整数n,k(k+1≤n)。
Output
输出第一行包含一个整数,为小H可以得到的最大分数。
Sample Input
4 1 3 4 0 2 3
Sample Output
HINT
【样例说明】
在样例中,小H可以通过如下3轮操作得到108分:
1.-开始小H有一个序列(4,1,3,4,0,2,3)。小H选择在第1个数之后的位置
将序列分成两部分,并得到4×(1+3+4+0+2+3)=52分。
2.这一轮开始时小H有两个序列:(4),(1,3,4,0,2,3)。小H选择在第3个数
字之后的位置将第二个序列分成两部分,并得到(1+3)×(4+0+2+
3)=36分。
3.这一轮开始时小H有三个序列:(4),(1,3),(4,0,2,3)。小H选择在第5个
数字之后的位置将第三个序列分成两部分,并得到(4+0)×(2+3)=
20分。
经过上述三轮操作,小H将会得到四个子序列:(4),(1,3),(4,0),(2,3)并总共得到52+36+20=108分。
【数据规模与评分】
:数据满足2≤n≤100000,1≤k≤min(n -1,200)。
Source
这题,,做的我,,想骂人
只要你能看出,最终答案与分割顺序无关
然后剩下的就是被卡时间被卡空间被卡精度了******
按照上面说的,首先列出裸的dp方程
$f[i][j]$表示前$i$个分了$j$段,转移的时候枚举从哪里分开
时间复杂度:$O(N^2k)$
考虑优化,设$j>k$且$j$比$k$优
最后可以画为
$$S_{i} >\dfrac {S^{2}_{j}-f_{j}-\left( S^{2}_{x}-f_{k}\right) }{S_{i}-S_{k}}$$
按照套路,发现能斜率优化,然后上模板就行了,单调队列可以滚动掉
这题是我为数不多会做但是不会写代码的题
到最后还没在UOJ上卡过去
// luogu-judger-enable-o2 // luogu-judger-enable-o2 #include<cstdio> #include<algorithm> #include<map> #include<vector> #define LL long long #define getchar() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1 << 21, stdin), p1 == p2) ? EOF : *p1++) char buf[1 << 21], *p1 = buf, *p2 = buf; const int MAXN = 100001; const LL INF = 1e18 + 10; using namespace std; inline int read() { char c = getchar(); int x = 0, f = 1; while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();} while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar(); return x * f; } int N, K; LL a[MAXN], sum[MAXN]; LL f[MAXN][2]; int pre[MAXN][201], q[MAXN], h, t, now = 0; LL X(int x) { return sum[x]; } LL Y(int x) { return sum[x] * sum[x] - f[x][now ^ 1]; } double slope(int x, int y) { //printf("%d %d\n", x, y); if(X(y) == X(x)) return -INF; return (double)(Y(y) - Y(x)) / (X(y) - X(x)); } main() { #ifdef WIN32 freopen("a.in", "r", stdin); #endif N = read(); K = read(); for(int i = 1; i <= N; i++) a[i] = read(), sum[i] = sum[i - 1] + a[i]; for(int j = 1; j <= K; j++) { h = t = 0; now ^= 1; for(int i = 1; i <= N; i++) { while(h < t && slope(q[h], q[h + 1]) <= (double)sum[i]) h++; int k = q[h]; f[i][now] = f[k][now ^ 1] + (sum[i] - sum[k]) * sum[k]; pre[i][j] = k; while(h < t && (slope(q[t - 1], q[t]) >= slope(q[t], i))) --t; q[++t] = i; } } printf("%lld\n", f[N][now]); }
下一篇: Python闭包实现计数器的方法