欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

BZOJ3675: [Apio2014]序列分割(斜率优化)

程序员文章站 2022-05-05 16:28:49
Description 小H最近迷上了一个分隔序列的游戏。在这个游戏里,小H需要将一个长度为n的非负整数序列分割成k+1个非空的子序列。为了得到k+1个子序列,小H需要重复k次以下的步骤: 1.小H首先选择一个长度超过1的序列(一开始小H只有一个长度为n的序列——也就是一开始得到的整个序列); 2. ......
Time Limit: 40 Sec  Memory Limit: 128 MB
Submit: 4186  Solved: 1629
[][][]

Description

小H最近迷上了一个分隔序列的游戏。在这个游戏里,小H需要将一个长度为n的非负整数序列分割成k+1个非空的子序列。为了得到k+1个子序列,小H需要重复k次以下的步骤:
1.小H首先选择一个长度超过1的序列(一开始小H只有一个长度为n的序列——也就是一开始得到的整个序列);
2.选择一个位置,并通过这个位置将这个序列分割成连续的两个非空的新序列。
 
每次进行上述步骤之后,小H将会得到一定的分数。这个分数为两个新序列中元素和的乘积。小H希望选择一种最佳的分割方式,使得k轮之后,小H的总得分最大。

Input

输入第一行包含两个整数n,k(k+1≤n)。

第二行包含n个非负整数a1,a2,...,an(0≤ai≤10^4),表示一开始小H得到的序列。

Output

输出第一行包含一个整数,为小H可以得到的最大分数。

Sample Input

7 3
4 1 3 4 0 2 3

Sample Output

108

HINT


【样例说明】 

在样例中,小H可以通过如下3轮操作得到108分: 

1.-开始小H有一个序列(4,1,3,4,0,2,3)。小H选择在第1个数之后的位置 

将序列分成两部分,并得到4×(1+3+4+0+2+3)=52分。 

2.这一轮开始时小H有两个序列:(4),(1,3,4,0,2,3)。小H选择在第3个数 

字之后的位置将第二个序列分成两部分,并得到(1+3)×(4+0+2+ 

3)=36分。 

3.这一轮开始时小H有三个序列:(4),(1,3),(4,0,2,3)。小H选择在第5个 

数字之后的位置将第三个序列分成两部分,并得到(4+0)×(2+3)= 

20分。 

经过上述三轮操作,小H将会得到四个子序列:(4),(1,3),(4,0),(2,3)并总共得到52+36+20=108分。 

【数据规模与评分】 

:数据满足2≤n≤100000,1≤k≤min(n -1,200)。

Source

 

这题,,做的我,,想骂人

只要你能看出,最终答案与分割顺序无关

然后剩下的就是卡时间卡空间卡精度了******

按照上面说的,首先列出裸的dp方程

$f[i][j]$表示前$i$个分了$j$段,转移的时候枚举从哪里分开

时间复杂度:$O(N^2k)$

考虑优化,设$j>k$且$j$比$k$优

最后可以画为

$$S_{i} >\dfrac {S^{2}_{j}-f_{j}-\left( S^{2}_{x}-f_{k}\right) }{S_{i}-S_{k}}$$

按照套路,发现能斜率优化,然后上模板就行了,单调队列可以滚动掉

这题是我为数不多会做但是不会写代码的题

到最后还没在UOJ上卡过去

 

 

// luogu-judger-enable-o2
// luogu-judger-enable-o2
#include<cstdio>
#include<algorithm>
#include<map>
#include<vector>
#define LL long long 
#define getchar() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1 << 21, stdin), p1 == p2) ? EOF : *p1++)
char buf[1 << 21], *p1 = buf, *p2 = buf;
const int MAXN = 100001;
const LL INF = 1e18 + 10;
using namespace std;
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
int N, K;
LL a[MAXN], sum[MAXN];
LL f[MAXN][2];
int pre[MAXN][201], q[MAXN], h, t, now = 0;
LL X(int x) {
    return sum[x];
}
LL Y(int x) {
    return sum[x] * sum[x] - f[x][now ^ 1];
}
double slope(int x, int y) {
    //printf("%d %d\n", x, y);
    if(X(y) == X(x)) return -INF;
    return (double)(Y(y) - Y(x)) / (X(y) - X(x));
}
main() {
    #ifdef WIN32
    freopen("a.in", "r", stdin);  
    #endif
    N = read(); K = read();
    for(int i = 1; i <= N; i++) a[i] = read(), sum[i] = sum[i - 1] + a[i];
    
    for(int j = 1; j <= K; j++) {
        h = t = 0; now ^= 1;
        for(int i = 1; i <= N; i++) {    
            while(h < t && slope(q[h], q[h + 1]) <= (double)sum[i]) h++;
            int k = q[h];
            f[i][now] = f[k][now ^ 1] + (sum[i] - sum[k]) * sum[k];
            pre[i][j] = k;
            while(h < t && (slope(q[t - 1], q[t]) >= slope(q[t], i))) --t;
            q[++t] = i;
        }
    } 
    printf("%lld\n", f[N][now]); 
}