欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

计算机视觉OpenCV函数pyrMeanShiftFiltering

程序员文章站 2024-01-20 16:52:16
...

参考大佬-牧野-的
https://blog.csdn.net/dcrmg/article/details/52705087

Opencv均值漂移pyrMeanShiftFiltering彩色图像分割流程剖析

meanShfit均值漂移算法是一种通用的聚类算法,它的基本原理是:对于给定的一定数量样本,任选其中一个样本,以该样本为中心点划定一个圆形区域,求取该圆形区域内样本的质心,即密度最大处的点,再以该点为中心继续执行上述迭代过程,直至最终收敛。可以利用均值偏移算法的这个特性,实现彩色图像分割,

Opencv中对应的函数是pyrMeanShiftFiltering。这个函数严格来说并不是图像的分割,而是图像在色彩层面的平滑滤波,它可以中和色彩分布相近的颜色,平滑色彩细节,侵蚀掉面积较小的颜色区域,


void pyrMeanShiftFiltering( InputArray src, OutputArray dst,
                                         double sp, double sr, int maxLevel=1,
                                         TermCriteria termcrit=TermCriteria(
                                            TermCriteria::MAX_ITER+TermCriteria::EPS,5,1) );

第一个参数src,输入图像,8位,三通道的彩色图像,并不要求必须是RGB格式,HSV、YUV等Opencv中的彩色图像格式均可;

第二个参数dst,输出图像,跟输入src有同样的大小和数据格式;

第三个参数sp,定义的漂移物理空间半径大小;

第四个参数sr,定义的漂移色彩空间半径大小;

第五个参数maxLevel,定义金字塔的最大层数;

第六个参数termcrit,定义的漂移迭代终止条件,可以设置为迭代次数满足终止,迭代目标与中心点偏差满足终止,或者两者的结合;

pyrMeanShiftFiltering函数的执行过程是这样的:

  1. 迭代空间构建
  2. 求取迭代空间的向量并移动迭代空间球体后重新计算向量,直至收敛(一个图像,然后选取一个球形,求得所有点相对于中心点的色彩向量之和后,移动选取的球形继续操作,有点类似卷积层)
  3. 更新输出图像dst上对应的初始原点P0的色彩值为本轮迭代的终点Pn的色彩值,如此完成一个点的色彩均值漂移。

4.输入图像src上其他点,依次执行步骤1,、2、3,遍历完所有点位后,整个均值偏移色彩滤波完成

半径越大,图像的细节就丢失的越多