欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python实现一个简单的并查集的示例代码

程序员文章站 2024-01-20 08:14:22
并查集是一种树型的数据结构,用于处理一些不相交集合的合并及查询问题。常常在使用中以森林来表示。 并查集有三种基本操作,获得根节点,判断两节点是否连通,以及将两不连通的节点...

并查集是一种树型的数据结构,用于处理一些不相交集合的合并及查询问题。常常在使用中以森林来表示。

并查集有三种基本操作,获得根节点,判断两节点是否连通,以及将两不连通的节点相连(相当于将两节点各自的集合合并)

用UnionFind类来表示一个并查集,在构造函数中,初始化一个数组parent,parent[i]表示的含义为,索引为i的节点,它的直接父节点为parent[i]。初始化时各个节点都不相连,因此初始化parent[i]=i,让自己成为自己的父节点,从而实现各节点不互连。

  def __init__(self, n):
    self.parent = list(range(n))

由于parent[i]仅表示自己的直接父节点,查询两个节点是否相交需要比较它们的根节点是否相同。因此要封装一个查询自己根节点的方法。

  def get_root(self, i):
    while i != self.parent[i]:
      i = self.parent[i]

    return i

接下来可以通过来比较根节点是否相同来判断两节点是否连通。

  def is_connected(self, i, j):
    return self.get_root(i) == self.get_root(j)

当要连通两个节点时,我们要将其中一个节点的根节点的parent,设置为另一个节点的根节点。注意,连通两个节点并非仅仅让两节点自身相连,实际上是让它们所属的集合实现合并。

  def union(self, i, j):
    i_root = self.get_root(i)
    j_root = self.get_root(j)
    self.parent[i_root] = j_root

接下来我们做两个小优化。

由于调用get_root时需要通过不断找自己的直接父节点,来寻找根节点,如果这棵树的层级过深,会导致性能受到严重影响。因此我们需要在union时,尽可能的减小合并后的树的高度。

在构造函数中新建一个数组rank,rank[i]表示节点i所在的集合的树的高度。

因此,当合并树时,分别获得节点i和节点j的root i_root和j_root之后,我们通过访问rank[i_root]和rank[j_root]来比较两棵树的高度,将高度较小的那棵连到高度较高的那棵上。如果高度相等,则可以随便,并将rank值加一。

  def union(self, i, j):
    i_root = self.get_root(i)
    j_root = self.get_root(j)

    if self.rank[i_root] == self.rank[j_root]:
      self.parent[i_root] = j_root
      self.rank[j_root] += 1
    elif self.rank[i_root] > self.rank[j_root]:
      self.parent[j_root] = i_root
    else:
      self.parent[i_root] = j_root

通过对union操作的改良可以防止树的高度过高。我们还可以对get_root操作本身进行优化。

当前每次执行get_root时,需要一层一层的找到自己的父节点,很费时。由于根节点没有父节点,并且文章开始处提到过如果一个节点没有父节点,那么它的父节点就是自己,因此可以说只有根节点的父节点是自己本身。现在我们加上一个判断,判断当前节点的父节点是否为根节点,如果不为根节点,就递归地将自己的父节点设置为根节点,最后返回自己的父节点。

  def get_root(self, i):
    if self.parent[i] != self.parent[self.parent[i]]:
      self.parent[i] = self.get_root(self.parent[i])
    return self.parent[i]

以上是python实现一个简单的并查集的方式。希望对大家的学习有所帮助,也希望大家多多支持。