欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

洛谷 P3835 【模板】可持久化平衡树

程序员文章站 2024-01-18 12:16:40
这个题也是可以用可持久化线段树来解决的。 值域线段树(也有的叫权值线段树)可以用来维护一个可重集,并实现一些一般情况下平衡树才能实现的事情。 如果用值来当做区间左右端点,每个叶子节点上存某个值出现的次数,非叶子节点上存一定范围内的值出现的总次数,就可以建成值域线段树。可以在上面直接查询第k大值、小于 ......

这个题也是可以用可持久化线段树来解决的。

值域线段树(也有的叫权值线段树)可以用来维护一个可重集,并实现一些一般情况下平衡树才能实现的事情。

如果用值来当做区间左右端点,每个叶子节点上存某个值出现的次数,非叶子节点上存一定范围内的值出现的总次数,就可以建成值域线段树。可以在上面直接查询第k大值、小于某值的数的个数等等,具体请百度或参见代码。

如何将线段树可持久化呢?线段树在单点更新的时候会经过log n个节点,每一次更新时显然也只有这么多节点会发生变化。

记录每一个版本的线段树的根节点,每一次操作前将根节点赋为与这次操作基于的版本的根节点相同。在更新操作时,备份每一个经过的节点(包括各个属性:左、右子树以及区间和),然后再进行修改。具体也可以参考可持久化线段树的题解。

如果直接用可持久化的值域线段树,显然空间是不够的(4*2e9个节点啊...)。现在有两种选择:

1.发现这道题没有加、减操作,所有操作涉及的值都是确定的。因此可以进行离散化,然后再做,想必可以A掉吧(我没试过)

2.可以写动态开点线段树。题目要求的集合一开始是空的,因此如果一开始建一棵完整的线段树的话,每一个节点记录的区间和都是0。而总共只有5e5次操作,每一次操作涉及更改节点最多有log2(2e9)=31个,两者乘起来远远小于4*2e9。

可以考虑一开始不真正建树。规定:如果某节点的某个子节点是一个特殊的标记的话,表明以这个子节点为根的子树还没有实际建出来。显然,一个子树没有实际建出来的时候,其表示的区间的和为0。(以下代码中我用的标记是0)

在进行修改操作的时候,可能需要建出来要走入的那个子节点。在进行查询操作的时候,可以把未建出的子节点的区间和当做0。

附:写完后我发现前驱和后继竟然是最难写的...

附:注意各种对不存在的节点的查询/要忽略的操作

附:注意代码中有一些操作用到的变量被设置成了全局变量,还define了一个mid,表示区间中点,可能比较奇怪...

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<bits/stdc++.h>
#define mid ((l+r)>>1)
#define inf 2147483647
using namespace std;
int lc[20000000],rc[20000000],root[20000000],dat[20000000],ll=-1e9,rr=1e9;
//lc[i]、rc[i]分别表示节点i的左子节点、右子节点编号,如果lc[x]=0则表示x的左子树尚未建出来,rc[x]同理
//dat[i]表示节点i表示的值域区间中各数的出现次数之和
int n,L,x,mem=1;//因为0号被"未实际建出的节点"的特殊标记占用了,1号被版本0的根节点占用了

void addx(int l,int r,int& num)//更新操作,将线段树维护的集合中数L的出现次数加上x(x为1或-1)
{
    int t=num;num=++mem;lc[num]=lc[t];rc[num]=rc[t];dat[num]=dat[t];//备份当前节点,如果当前节点原来为空则也可以完成
    if(l==r)
    {
        if(!(dat[num]==0&&x<0)) dat[num]+=x;//如果L出现次数为0且操作为删除操作,则忽略操作
        return;
    }
    if(L<=mid)  addx(l,mid,lc[num]);
    else    addx(mid+1,r,rc[num]);
    dat[num]=0;
    if(lc[num]) dat[num]+=dat[lc[num]];
    if(rc[num]) dat[num]+=dat[rc[num]];//维护当前节点信息
}
int query(int l,int r,int num)//查询集合中小于x的数的个数
{
    if(l==r)    return 0;//如果已经到叶子节点了,那么当前节点等于x,显然不小于x
    if(!num)    return 0;//如果当前节点为空,那么该节点表示的子树中数都没有,自然返回0
    if(x<=mid)  return query(l,mid,lc[num]);//根据x决定向左/右子树走
    else    return (lc[num]?dat[lc[num]]:0)+query(mid+1,r,rc[num]);
}
int query_kth(int l,int r,int k,int num)//查询第k小数
{
    assert(num!=0);//assert(x)表示如果x为false则停止程序,是用来调试的。如果查询操作是正常进行的,那么不可能走到未建出的点中
    if(l==r)    {return l;}
    //if(!num)  return 0;//没有用
    int ls=lc[num]?dat[lc[num]]:0;
    if(ls>=k)   return query_kth(l,mid,k,lc[num]);//根据左子树中数出现总次数决定向左/右子树走
    else        return query_kth(mid+1,r,k-ls,rc[num]);
}
int query_time(int l,int r,int num)//查询数x出现的次数
{
    while(l!=r)
    {
        if(!num)    return 0;//当前节点未建出,表明其子节点均未出现
        if(L<=mid)  r=mid,num=lc[num];
        else    l=mid+1,num=rc[num];
    }
    return dat[num];
}
int query_pre(int l,int r,int num)//查询数x的前驱
{
    int t=query(l,r,num);//t是集合中比x小的数的个数
    if(t==0)    return -inf;//如果集合中比x小的数有0个,则x是集合中最小的数,不存在前驱
    return query_kth(l,r,t,num);//否则查询集合中第t小即可
}
int query_nxt(int l,int r,int num)
{
    int t1=query(l,r,num),t2=query_time(l,r,num);//t1是集合中比x小的数的个数,t2是集合中x出现的次数,加起来是集合中小于等于x的数的个数
    x=inf;int t3=query(l,r,num);
    if(t1+t2==t3)   return inf;//如果集合中小于等于x的数与集合中小于等于inf的数相等,则x是集合中最大的数,不存在后继
    return query_kth(l,r,t1+t2+1,num);//否则查询集合中第t1+t2+1小即可
}
int main()
{
    int i,v,idx;
    scanf("%d",&n);
    root[0]=1;
    for(i=1;i<=n;i++)
    {
        scanf("%d%d%d",&v,&idx,&x);root[i]=root[v];
        if(idx==1)
        {
            L=x;x=1;
            addx(ll,rr,root[i]);
        }
        else if(idx==2)
        {
            L=x;x=-1;
            addx(ll,rr,root[i]);
        }
        else if(idx==3)
        {
            printf("%d\n",query(ll,rr,root[i])+1);
        }
        else if(idx==4)
        {
            printf("%d\n",query_kth(ll,rr,x,root[i]));
        }
        else if(idx==5)
        {
            L=x;
            printf("%d\n",query_pre(ll,rr,root[i]));
        }
        else if(idx==6)
        {
            L=x;
            printf("%d\n",query_nxt(ll,rr,root[i]));
        }
    }
    return 0;
}