LCA RMQ ST表优化 模板
程序员文章站
2024-01-14 16:26:34
...
#include <iostream>
#include <vector>
#include <cstdio>
#include <string>
#include <cstring>
#include <map>
#include <algorithm>
#include <queue>
#include <set>
#include <cmath>
#include <sstream>
#include <stack>
#include <fstream>
#include <ctime>
#pragma warning(disable:4996);
#define mem(sx,sy) memset(sx,sy,sizeof(sx))
typedef long long ll;
typedef unsigned long long ull;
const double eps = 1e-8;
const double PI = acos(-1.0);
const ll llINF = 0x3f3f3f3f3f3f3f3f;
const int INF = 0x3f3f3f3f;
using namespace std;
//#define pa pair<int, int>
//const int mod = 1e9 + 7;
const int maxn = 250005;
struct node {
int u, v, w, next, lca;
};
struct LCA {
node edges[maxn<<1];
int head[maxn<<1], cnt1;
int id[maxn<<1], in[maxn<<1], Dep[maxn<<1], Dist[maxn<<1], cnt2;
int RMQ[maxn<<1][20];
void addedge(int u, int v, int w) {
edges[cnt1].v = v;
edges[cnt1].w = w;
edges[cnt1].next = head[u];
head[u] = cnt1++;
}
void init() {
mem(head, -1);
cnt1 = 0;
}
void DFS(int u, int f, int d, int dis) {
in[++cnt2] = u;
Dep[cnt2] = d;
id[u] = cnt2;
Dist[u] = dis;
for (int i = head[u]; i != -1; i = edges[i].next) {
int v = edges[i].v;
if (v == f) continue;
DFS(v, u, d + 1, dis + 1);
in[++cnt2] = u;
Dep[cnt2] = d;
}
}
void initRMQ() {
for (int i = 1; i <= cnt2; i++)
RMQ[i][0] = i;
for (int j = 1; (1 << j) <= cnt2; j++) {
for (int i = 1; i + (1 << j) - 1 <= cnt2; i++) {
int x = RMQ[i][j - 1];
int y = RMQ[i + (1 << (j - 1))][j - 1];
RMQ[i][j] = Dep[x] < Dep[y] ? x : y;
}
}
}
int getLCA(int a, int b) {
int k, x, y;
a = id[a]; b = id[b];
if (a > b)swap(a, b);
k = log(1.0 + b - a) / log(2.0);
x = RMQ[a][k];
y = RMQ[b - (1 << k) + 1][k];
return Dep[x] < Dep[y]?in[x] : in[y];
}
int getdist(int x, int y) {
return Dist[x] + Dist[y] - 2 * Dist[getLCA(x, y)];
}
}L;
struct edge {
int u, v;
ll w;
bool operator<(const edge &e)const { return w>e.w; }
edge(int _u = 0, int _v = 0, ll _w = 0)
:u(_u), v(_v), w(_w) {}
};
struct Kruskal {
int n, m;
edge edges[maxn<<1];
int fa[maxn];
int Find(int x) {
return fa[x] == -1 ? x : fa[x] = Find(fa[x]);
}
void init(int _n) {
this->n = _n;
m = 0;
mem(fa, -1);
}
void AddEdge(int u, int v, ll dist) {
edges[m++] = edge(u, v, dist);
}
ll kruskal() {
ll sum = 0;
int cntnum = 0;
sort(edges, edges + m);
for (int i = 0; i < m; i++) {
int u = edges[i].u, v = edges[i].v;
if (Find(u) != Find(v)) {
L.addedge(u, v, 1);
L.addedge(v, u, 1);
//cout << u << " " << v << endl;
sum += edges[i].w;
fa[Find(u)] = Find(v);
if (++cntnum >= n - 1) return sum;
}
}
return -1;
}
}G;
int main() {
int n, m;
while (~scanf("%d%d", &n, &m)) {
G.init(n*m);
L.init();
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
int w1, w2; char c1, c2;
scanf(" %c%d %c%d", &c1, &w1, &c2, &w2);
if (c1 == 'D') {
G.AddEdge((i - 1)*m + j, i*m + j, w1);
}
if (c2 == 'R') {
G.AddEdge((i - 1)*m + j, (i - 1)*m + j + 1, w2);
}
}
}
G.kruskal();
L.DFS(1, 0, 0, 0);
L.initRMQ();
int q;
scanf("%d", &q);
for (int i = 1, x1, x2, y1, y2; i <= q; i++) {
scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
int u = (x1 - 1)*m + y1;
int v = (x2 - 1)*m + y2;
printf("%d\n", L.getdist(u, v));
}
}
}
上一篇: json格式总结速记
下一篇: ST表求LCA