欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

tensorflow 获取变量&打印权值的实例讲解

程序员文章站 2024-01-12 19:17:40
在使用tensorflow中,我们常常需要获取某个变量的值,比如:打印某一层的权重,通常我们可以直接利用变量的name属性来获取,但是当我们利用一些第三方的库来构造神经网络...

在使用tensorflow中,我们常常需要获取某个变量的值,比如:打印某一层的权重,通常我们可以直接利用变量的name属性来获取,但是当我们利用一些第三方的库来构造神经网络的layer时,存在一种情况:就是我们自己无法定义该层的变量,因为是自动进行定义的。

比如用tensorflow的slim库时:

<span style="font-size:14px;">def resnet_stack(images, output_shape, hparams, scope=none):</span>
<span style="font-size:14px;"> """create a resnet style transfer block.</span>
<span style="font-size:14px;"></span>
<span style="font-size:14px;"> args:</span>
<span style="font-size:14px;"> images: [batch-size, height, width, channels] image tensor to feed as input</span>
<span style="font-size:14px;"> output_shape: output image shape in form [height, width, channels]</span>
<span style="font-size:14px;"> hparams: hparams objects</span>
<span style="font-size:14px;"> scope: variable scope</span>
<span style="font-size:14px;"></span>
<span style="font-size:14px;"> returns:</span>
<span style="font-size:14px;"> images after processing with resnet blocks.</span>
<span style="font-size:14px;"> """</span>
<span style="font-size:14px;"> end_points = {}</span>
<span style="font-size:14px;"> if hparams.noise_channel:</span>
<span style="font-size:14px;"> # separate the noise for visualization</span>
<span style="font-size:14px;"> end_points['noise'] = images[:, :, :, -1]</span>
<span style="font-size:14px;"> assert images.shape.as_list()[1:3] == output_shape[0:2]</span>
<span style="font-size:14px;"></span>
<span style="font-size:14px;"> with tf.variable_scope(scope, 'resnet_style_transfer', [images]):</span>
<span style="font-size:14px;"> with slim.arg_scope(</span>
<span style="font-size:14px;">  [slim.conv2d],</span>
<span style="font-size:14px;">  normalizer_fn=slim.batch_norm,</span>
<span style="font-size:14px;">  kernel_size=[hparams.generator_kernel_size] * 2,</span>
<span style="font-size:14px;">  stride=1):</span>
<span style="font-size:14px;">  net = slim.conv2d(</span>
<span style="font-size:14px;">   images,</span>
<span style="font-size:14px;">   hparams.resnet_filters,</span>
<span style="font-size:14px;">   normalizer_fn=none,</span>
<span style="font-size:14px;">   activation_fn=tf.nn.relu)</span>
<span style="font-size:14px;">  for block in range(hparams.resnet_blocks):</span>
<span style="font-size:14px;">  net = resnet_block(net, hparams)</span>
<span style="font-size:14px;">  end_points['resnet_block_{}'.format(block)] = net</span>
<span style="font-size:14px;"></span>
<span style="font-size:14px;">  net = slim.conv2d(</span>
<span style="font-size:14px;">   net,</span>
<span style="font-size:14px;">   output_shape[-1],</span>
<span style="font-size:14px;">   kernel_size=[1, 1],</span>
<span style="font-size:14px;">   normalizer_fn=none,</span>
<span style="font-size:14px;">   activation_fn=tf.nn.tanh,</span>
<span style="font-size:14px;">   scope='conv_out')</span>
<span style="font-size:14px;">  end_points['transferred_images'] = net</span>
<span style="font-size:14px;"> return net, end_points</span>

我们希望获取第一个卷积层的权重weight,该怎么办呢??

在训练时,这些可训练的变量会被tensorflow保存在 tf.trainable_variables() 中,于是我们就可以通过打印 tf.trainable_variables() 来获取该卷积层的名称(或者你也可以自己根据scope来看出来该变量的name ),然后利用tf.get_default_grap().get_tensor_by_name 来获取该变量。

举个简单的例子:

<span style="font-size:14px;">import tensorflow as tf</span>
<span style="font-size:14px;">with tf.variable_scope("generate"):</span>
<span style="font-size:14px;"> with tf.variable_scope("resnet_stack"):</span>
<span style="font-size:14px;">  #简单起见,这里没有用第三方库来说明,</span>
<span style="font-size:14px;">  bias = tf.variable(0.0,name="bias")</span>
<span style="font-size:14px;">  weight = tf.variable(0.0,name="weight")</span>
<span style="font-size:14px;"></span>
<span style="font-size:14px;">for tv in tf.trainable_variables():</span>
<span style="font-size:14px;"> print (tv.name)</span>
<span style="font-size:14px;"></span>
<span style="font-size:14px;">b = tf.get_default_graph().get_tensor_by_name("generate/resnet_stack/bias:0")</span>
<span style="font-size:14px;">w = tf.get_default_graph().get_tensor_by_name("generate/resnet_stack/weight:0")</span>
<span style="font-size:14px;"></span>
<span style="font-size:14px;">with tf.session() as sess:</span>
<span style="font-size:14px;"> tf.global_variables_initializer().run()</span>
<span style="font-size:14px;"> print(sess.run(b))</span>
<span style="font-size:14px;"> print(sess.run(w))
</span>

结果如下:

tensorflow 获取变量&打印权值的实例讲解

以上这篇tensorflow 获取变量&打印权值的实例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。