欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

tensorflow更改变量的值实例

程序员文章站 2023-10-31 12:40:40
如下所示: from __future__ import print_function,division import tensorflow as tf...

如下所示:

from __future__ import print_function,division
import tensorflow as tf

#create a Variable
w=tf.Variable(initial_value=[[1,2],[3,4]],dtype=tf.float32)
x=tf.Variable(initial_value=[[1,1],[1,1]],dtype=tf.float32,validate_shape=False)

init_op=tf.global_variables_initializer()
update=tf.assign(x,[[1,2],[1,2]])

with tf.Session() as session:
 session.run(init_op)
 session.run(update)
 x=session.run(x)
 print(x)

实验结果:

[[ 1. 2.]
 [ 1. 2.]]

tensorflow使用assign(variable,new_value)来更改变量的值,但是真正作用在garph中,必须要调用gpu或者cpu运行这个更新过程。

session.run(update)

tensorflow不支持直接对变量进行赋值更改

from __future__ import print_function,division
import tensorflow as tf

#create a Variable
x=tf.Variable(initial_value=[[1,1],[1,1]],dtype=tf.float32,validate_shape=False)
x=[[1,3],[2,4]]
init_op=tf.global_variables_initializer()
update=tf.assign(x,[[1,2],[1,2]])
with tf.Session() as session:
 session.run(init_op)
 session.run(update)
 print(session.run(x))

error:

"C:\Program Files\Anaconda3\python.exe" D:/pycharmprogram/tensorflow_learn/assign_learn/assign_learn.py
Traceback (most recent call last):
 File "D:/pycharmprogram/tensorflow_learn/assign_learn/assign_learn.py", line 8, in <module>
 update=tf.assign(x,[[1,2],[1,2]])
 File "C:\Program Files\Anaconda3\lib\site-packages\tensorflow\python\ops\state_ops.py", line 271, in assign
 if ref.dtype._is_ref_dtype:
AttributeError: 'list' object has no attribute 'dtype'

Process finished with exit code 1

以上这篇tensorflow更改变量的值实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。