欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

机器学习基础 --- pandas的基本使用

程序员文章站 2022-03-18 16:03:32
一、pandas的简介 Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。pandas提供了大量能使我们快速便捷地处理数 ......

一、pandas的简介

  Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。pandas提供了大量能使我们快速便捷地处理数据的函数和方法。

pandas的数据结构:

  Series:一维数组,与Numpy中的一维array类似。二者与Python基本的数据结构List也很相近,其区别是:List中的元素可以是不同的数据类型,而Array和Series中则只允许存储相同的数据类型,这样可以更有效的使用内存,提高运算效率。

  Time- Series:以时间为索引的Series。

  DataFrame:二维的表格型数据结构。很多功能与R中的data.frame类似。可以将DataFrame理解为Series的容器。以下的内容主要以DataFrame为主。

  Panel :三维的数组,可以理解为DataFrame的容器。

  本文主要介绍DateFrame和Series,其中DataFrame充电介绍。

  本文中用到的数据文件地址:pandas的基本使用.zip

  本文只是结合实例介绍pandas的基本使用,若要详细深入学习,请参阅pandas官方文档

二、pandas中的DateFrame

  使用pandas我们可以很方便的对二维表结构进行一些常规操作。 

1. 使用pandas读取csv(或excel等)文件

import pandas
food_info = pandas.read_csv("food_info.csv")          # 读取csv文件
# 读取Excel文件使用pandas.read_excel()即可
print(type(food_info))           # food_info为一个DataFrame对象
print(food_info.dtypes)          # 各项数据的类型
机器学习基础 --- pandas的基本使用
<class 'pandas.core.frame.DataFrame'>
NDB_No               int64
Shrt_Desc           object
Water_(g)          float64
Energ_Kcal           int64
Protein_(g)        float64
Lipid_Tot_(g)      float64
Ash_(g)            float64
Carbohydrt_(g)     float64
Fiber_TD_(g)       float64
Sugar_Tot_(g)      float64
Calcium_(mg)       float64
Iron_(mg)          float64
Magnesium_(mg)     float64
Phosphorus_(mg)    float64
Potassium_(mg)     float64
Sodium_(mg)        float64
Zinc_(mg)          float64
Copper_(mg)        float64
Manganese_(mg)     float64
Selenium_(mcg)     float64
Vit_C_(mg)         float64
Thiamin_(mg)       float64
Riboflavin_(mg)    float64
Niacin_(mg)        float64
Vit_B6_(mg)        float64
Vit_B12_(mcg)      float64
Vit_A_IU           float64
Vit_A_RAE          float64
Vit_E_(mg)         float64
Vit_D_mcg          float64
Vit_D_IU           float64
Vit_K_(mcg)        float64
FA_Sat_(g)         float64
FA_Mono_(g)        float64
FA_Poly_(g)        float64
Cholestrl_(mg)     float64
dtype: object
输出 

2.  获取数据

food_info.head(10)     # 获取前10行数据,默认获取5行
# first_rows = food_info.head()
# first_rows
# food_info.tail(8)     # 获取尾8行数据,默认获取5行   
# print(food_info.tail())
print(food_info.columns)    # 获取foodinfo的各字段名(即表头)# print(food_info.shape)    # 获取结构  比如此文件时8618行×36列
机器学习基础 --- pandas的基本使用
Index(['NDB_No', 'Shrt_Desc', 'Water_(g)', 'Energ_Kcal', 'Protein_(g)',
       'Lipid_Tot_(g)', 'Ash_(g)', 'Carbohydrt_(g)', 'Fiber_TD_(g)',
       'Sugar_Tot_(g)', 'Calcium_(mg)', 'Iron_(mg)', 'Magnesium_(mg)',
       'Phosphorus_(mg)', 'Potassium_(mg)', 'Sodium_(mg)', 'Zinc_(mg)',
       'Copper_(mg)', 'Manganese_(mg)', 'Selenium_(mcg)', 'Vit_C_(mg)',
       'Thiamin_(mg)', 'Riboflavin_(mg)', 'Niacin_(mg)', 'Vit_B6_(mg)',
       'Vit_B12_(mcg)', 'Vit_A_IU', 'Vit_A_RAE', 'Vit_E_(mg)', 'Vit_D_mcg',
       'Vit_D_IU', 'Vit_K_(mcg)', 'FA_Sat_(g)', 'FA_Mono_(g)', 'FA_Poly_(g)',
       'Cholestrl_(mg)'],
      dtype='object')
输出1:

# print(food_info.loc[0])     # 获取第0行数据
print(food_info.loc[6000])          # 获取第6000行数据
# food_info.loc[10000] # 获取第10000行数据,超过数据文件本身长度,报错KeyError: 'the label [10000] is not in the [index]'
机器学习基础 --- pandas的基本使用
NDB_No                                                         18995
Shrt_Desc          KELLOGG'S EGGO BISCUIT SCRAMBLERS BACON EGG & CHS
Water_(g)                                                       42.9
Energ_Kcal                                                       258
Protein_(g)                                                      8.8
Lipid_Tot_(g)                                                    7.9
Ash_(g)                                                          NaN
Carbohydrt_(g)                                                  38.3
Fiber_TD_(g)                                                     2.1
Sugar_Tot_(g)                                                    4.7
Calcium_(mg)                                                     124
Iron_(mg)                                                        2.7
Magnesium_(mg)                                                    14
Phosphorus_(mg)                                                  215
Potassium_(mg)                                                   225
Sodium_(mg)                                                      610
Zinc_(mg)                                                        0.5
Copper_(mg)                                                      NaN
Manganese_(mg)                                                   NaN
Selenium_(mcg)                                                   NaN
Vit_C_(mg)                                                       NaN
Thiamin_(mg)                                                     0.3
Riboflavin_(mg)                                                 0.26
Niacin_(mg)                                                      2.4
Vit_B6_(mg)                                                     0.02
Vit_B12_(mcg)                                                    0.1
Vit_A_IU                                                         NaN
Vit_A_RAE                                                        NaN
Vit_E_(mg)                                                         0
Vit_D_mcg                                                          0
Vit_D_IU                                                           0
Vit_K_(mcg)                                                      NaN
FA_Sat_(g)                                                       4.1
FA_Mono_(g)                                                      1.5
FA_Poly_(g)                                                      1.1
Cholestrl_(mg)                                                    27
Name: 6000, dtype: object
输出2
# food_info.loc[3:6]        # 获取第3到6行数据
two_five_ten = [2,5,10]     
print(food_info.loc[two_five_ten])   # 获取第2,5,10数据
机器学习基础 --- pandas的基本使用
    NDB_No             Shrt_Desc  Water_(g)  Energ_Kcal  Protein_(g)  \
2     1003  BUTTER OIL ANHYDROUS       0.24         876         0.28   
5     1006           CHEESE BRIE      48.42         334        20.75   
10    1011          CHEESE COLBY      38.20         394        23.76   

    Lipid_Tot_(g)  Ash_(g)  Carbohydrt_(g)  Fiber_TD_(g)  Sugar_Tot_(g)  \
2           99.48     0.00            0.00           0.0           0.00   
5           27.68     2.70            0.45           0.0           0.45   
10          32.11     3.36            2.57           0.0           0.52   

         ...        Vit_A_IU  Vit_A_RAE  Vit_E_(mg)  Vit_D_mcg  Vit_D_IU  \
2        ...          3069.0      840.0        2.80        1.8      73.0   
5        ...           592.0      174.0        0.24        0.5      20.0   
10       ...           994.0      264.0        0.28        0.6      24.0   

    Vit_K_(mcg)  FA_Sat_(g)  FA_Mono_(g)  FA_Poly_(g)  Cholestrl_(mg)  
2           8.6      61.924       28.732        3.694           256.0  
5           2.3      17.410        8.013        0.826           100.0  
10          2.7      20.218        9.280        0.953            95.0  
输出3

# food_info['Shrt_Desc']     # 获取字段名为'Shrt_Desc'的这一列
ndb_col = food_info['NDB_No']    # 获取字段名为'NDB_No'的这一列
# print(ndb_col)
col_name = 'Shrt_Desc'
print(food_info[col_name])
机器学习基础 --- pandas的基本使用
0                                        BUTTER WITH SALT
1                                BUTTER WHIPPED WITH SALT
2                                    BUTTER OIL ANHYDROUS
3                                             CHEESE BLUE
4                                            CHEESE BRICK
5                                             CHEESE BRIE
6                                        CHEESE CAMEMBERT
7                                          CHEESE CARAWAY
8                                          CHEESE CHEDDAR
9                                         CHEESE CHESHIRE
10                                           CHEESE COLBY
11                    CHEESE COTTAGE CRMD LRG OR SML CURD
12                            CHEESE COTTAGE CRMD W/FRUIT
13       CHEESE COTTAGE NONFAT UNCRMD DRY LRG OR SML CURD
14                       CHEESE COTTAGE LOWFAT 2% MILKFAT
15                       CHEESE COTTAGE LOWFAT 1% MILKFAT
16                                           CHEESE CREAM
17                                            CHEESE EDAM
18                                            CHEESE FETA
19                                         CHEESE FONTINA
20                                         CHEESE GJETOST
21                                           CHEESE GOUDA
22                                         CHEESE GRUYERE
23                                       CHEESE LIMBURGER
24                                        CHEESE MONTEREY
25                             CHEESE MOZZARELLA WHL MILK
26                    CHEESE MOZZARELLA WHL MILK LO MOIST
27                       CHEESE MOZZARELLA PART SKIM MILK
28                   CHEESE MOZZARELLA LO MOIST PART-SKIM
29                                        CHEESE MUENSTER
                              ...                        
8588           BABYFOOD CRL RICE W/ PEARS & APPL DRY INST
8589                       BABYFOOD BANANA NO TAPIOCA STR
8590                       BABYFOOD BANANA APPL DSSRT STR
8591         SNACKS TORTILLA CHIPS LT (BAKED W/ LESS OIL)
8592    CEREALS RTE POST HONEY BUNCHES OF OATS HONEY RSTD
8593                           POPCORN MICROWAVE LOFAT&NA
8594                         BABYFOOD FRUIT SUPREME DSSRT
8595                                 CHEESE SWISS LOW FAT
8596               BREAKFAST BAR CORN FLAKE CRUST W/FRUIT
8597                              CHEESE MOZZARELLA LO NA
8598                             MAYONNAISE DRSNG NO CHOL
8599                            OIL CORN PEANUT AND OLIVE
8600                     SWEETENERS TABLETOP FRUCTOSE LIQ
8601                                CHEESE FOOD IMITATION
8602                                  CELERY FLAKES DRIED
8603             PUDDINGS CHOC FLAVOR LO CAL INST DRY MIX
8604                      BABYFOOD GRAPE JUC NO SUGAR CND
8605                     JELLIES RED SUGAR HOME PRESERVED
8606                           PIE FILLINGS BLUEBERRY CND
8607                 COCKTAIL MIX NON-ALCOHOLIC CONCD FRZ
8608              PUDDINGS CHOC FLAVOR LO CAL REG DRY MIX
8609    PUDDINGS ALL FLAVORS XCPT CHOC LO CAL REG DRY MIX
8610    PUDDINGS ALL FLAVORS XCPT CHOC LO CAL INST DRY...
8611                                   VITAL WHEAT GLUTEN
8612                                        FROG LEGS RAW
8613                                      MACKEREL SALTED
8614                           SCALLOP (BAY&SEA) CKD STMD
8615                                           SYRUP CANE
8616                                            SNAIL RAW
8617                                     TURTLE GREEN RAW
Name: Shrt_Desc, Length: 8618, dtype: object
输出4

columns = ['Water_(g)', 'Shrt_Desc']   
zinc_copper = food_info[columns]      # 获取字段名为'Water_(g)', 'Shrt_Desc'的这两列
print(zinc_copper)


# 获取以"(mg)"结尾的各列数据 col_names = food_info.columns.tolist() # print(col_names) milligram_columns = [] for items in col_names: if items.endswith("(mg)"): milligram_columns.append(items) milligram_df = food_info[milligram_columns] print(milligram_df)

 

3. 对数据的简单处理:

import pandas

food_info = pandas.read_csv('food_info.csv')
# food_info.head(3)
# print(food_info.shape) 

# print(food_info['Iron_(mg)'])
# Iron_(mg)这一列的单位是mg,将其转为mg,对其值除以1000
div_1000 = food_info['Iron_(mg)'] / 1000
# print(div_1000) 

# 对每行数据中的其中两列进行计算
water_energy = food_info['Water_(g)'] * food_info['Energ_Kcal']  
# print(food_info.shape)
# DateFrame结构插入一列,字段名为'water_energy',值为water_energy的数据
food_info['water_energy'] = water_energy
# print(food_info[['Water_(g)', 'Energ_Kcal', 'water_energy']])
# print(food_info.shape)

# 求某列的最大值
max_calories = food_info['Energ_Kcal'].max()
# print(max_calories)

# 对指定字段排序,inplace=False将排序后的结果生成一个新的DataFrame,inplace=True则在原来的基础上进行排序,默认升序排序
# food_info.sort_values('Sodium_(mg)', inplace=True)
# print(food_info['Sodium_(mg)'])
a = food_info.sort_values('Sodium_(mg)', inplace=False, ascending=False)  # ascending=False 使用降序排序
# print(food_info['Sodium_(mg)'])
# print(a['Sodium_(mg)'])

 

4. 对数据的常规操作

import pandas as pd
import numpy as np
titanic_survival = pd.read_csv('titanic_train.csv')
# titanic_survival.head()

age = titanic_survival['Age']
# print(age.loc[0:10])
age_is_null = pd.isnull(age)    # 迭代判断值是否为空,结果可以作为一个索引
# print(age_is_null)
age_null_true = age[age_is_null]   # 获取值为空的数据集
# print(age_null_true)
print(len(age_null_true))     # 判断一共有多少个空数据


# 求平均值,应用不为空的数据集求
good_ages = age[age_is_null == False]     # 获取值不为空的数据集
# print(good_ages)
correct_mean_age = sum(good_ages) / len(good_ages)   # 求平均
print(correct_mean_age)
# 或者使用pandas内置的求均值函数,自动去除空数据
correct_mean_age = age.mean()   # 求平均,将空值舍弃
print(correct_mean_age)


# pivot_table方法默认求平均值,如果需求是求平均aggfunc参数可以不写
# index tells the method which column to group by
# values is the column that we want to apply the calculation to
# aggfunc specifies the calculation we want to perform
passenger_surival = titanic_survival.pivot_table(index='Pclass', values='Survived', aggfunc=np.mean)  # 对index相同的分别求平均值
print(passenger_surival)

# 分组对多列求和
# port_stats = titanic_survival.pivot_table(index="Embarked", values=['Fare', "Survived"], aggfunc=np.sum)  # ,分别对价格和存活人数求和
# print(port_stats)


# 丢弃空值数据
drop_na_columns = titanic_survival.dropna(axis=1, inplace=False)    # axis=1,以行为判断依据,数据为空,则从Dataframe中丢弃,inplace=False返回一个新的Dataframe对象,否则对当前对象做操作
# print(drop_na_columns)
new_titanic_survival = titanic_survival.dropna(axis=0, subset=['Age', 'Sex'], inplace=False)  # axis=0,以列为判断依据,需要指定判断列的字段,数据为空,则从Dataframe中丢弃
# print(new_titanic_survival)


# 具体定位到某行某列
row_index_83_age = titanic_survival.loc[83, 'Age']
row_index_766_pclass = titanic_survival.loc[766, 'Pclass']
print(row_index_83_age)
print(row_index_766_pclass)


new_titanic_survival = titanic_survival.sort_values("Age", ascending=False)   # 每行的年龄按降序排序    
print(new_titanic_survival[0:10])
print('------------------------>')
titanic_reindexed = new_titanic_survival.reset_index(drop=True)    # 重置每行的索引值
print(titanic_reindexed[0:20])


# 自定义函数,对每行或每列逐个使用
def null_count(column):
    column_null = pd.isnull(column)
    null = column[column_null]
    return len(null)
column_null_count = titanic_survival.apply(null_count, axis=0)    # 通过自定义函数,统计每列为空的个数
print(column_null_count)


def which_class(row):
    pclass = row['Pclass'] 
    if pclass == 1:
        return 'First Class'
    elif pclass == 2:
        return 'Second Class'
    elif pclass == 3:
        return 'Third Class'
    else:
        return 'Unknow'
classes = titanic_survival.apply(which_class, axis=1)    # 通过自定义函数,替换每行的Pclass值, 注意axis=1
print(classes)

 

5. 配合numpy将数据载入后进行预处理

import pandas as pd
import numpy as np

fandango = pd.read_csv('fandango_score_comparison.csv')
# print(type(fandango))
# 返回一个新的dataframe,返回的新数据以设定的值为index,并将丢弃index值为空的数据,drop=True,丢弃为索引的列,否则不丢弃
fandango_films = fandango.set_index('FILM', drop=False)
# fandango_films
# print(fandango_films.index)

# 按索引获取数据
fandango_films["Avengers: Age of Ultron (2015)" : "Hot Tub Time Machine 2 (2015)"]
fandango_films.loc["Avengers: Age of Ultron (2015)" : "Hot Tub Time Machine 2 (2015)"]

fandango_films.loc['Southpaw (2015)']

movies = ['Kumiko, The Treasure Hunter (2015)', 'Do You Believe? (2015)', 'Ant-Man (2015)']
fandango_films.loc[movies]




# def func(coloumn):
#     return np.std(coloumn)

types = fandango_films.dtypes
# print(types)

float_columns = types[types.values == 'float64'].index  # 获取特定类型的数据的索引
# print(float_columns)
float_df = fandango_films[float_columns]        # 获取特定类型的数据
# print(float_df.dtypes)
# float_df
# print(float_df)
deviations = float_df.apply(lambda x: np.std(x))    # 计算每列标准差
print(deviations)
# print('----------------------->')
# print(float_df.apply(func))
# help(np.std)

rt_mt_user = float_df[['RT_user_norm', 'Metacritic_user_nom']]
print(rt_mt_user.apply(np.std, axis=1))   # 计算每行数据标准差
# rt_mt_user.apply(np.std, axis=0)

三、DataFrame中的Series

   Series为DateFrame中一行或一列的数据结构

1. 获取一个Series对象

import pandas as pd
from pandas import Series

fandango = pd.read_csv('fandango_score_comparison.csv')
series_film = fandango['FILM']   # 获取fandango中FILM这一列
# print(type(series_film))
print(series_film[0:5])
series_rt = fandango['RottenTomatoes']  # 获取fandango中RottenTomatoes这一列
print(series_rt[0:5])

 

2. 对Series对象的一些常规操作

file_names = series_film.values  # 获取series_film的所有值,返回值为一个<class 'numpy.ndarray'>
# print(type(file_names))
# print(file_names)
rt_scores = series_rt.values
# print(rt_scores)
series_custom = Series(rt_scores, index=file_names)   # 构建一个新的Series, index为file_names, value为rt_scores
# help(Series)
print(series_custom[['Top Five (2014)', 'Night at the Museum: Secret of the Tomb (2014)']])  # 以index获取数据
# print(type(series_custom))
print('--------------------------------->')
print(series_custom[5:10])   # 切片操作


# print(series_custom[["'71 (2015)"]])
original_index = series_custom.index.tolist()   # 获取所有的index值并将其转为list
# print(original_index)
sorted_index = sorted(original_index)   # 对list排序
# print(sort_index)
sorted_by_index = series_custom.reindex(sorted_index)   # 以排过序的list重新为series_custom设置索引
print(sorted_by_index)



sc2 = series_custom.sort_index()     # 以index按升序排序整个series_custom
# print(sc2)
sc3 = series_custom.sort_values(ascending=False)   # 以values按降序排序整个series_custom
print(sc3)



import numpy as np
# print(np.add(series_custom, series_custom))   #将series_custom当成一个矩阵,使用numpy进行计算
print(np.sin(series_custom))
print(np.max(series_custom))


# series_custom > 50
series_greater_than_50 = series_custom[series_custom > 50]    # 获取series_custom的值大于50的数据
# series_greater_than_50



criteria_one = series_custom > 50
criteria_two = series_custom < 75
both_criteria = series_custom[criteria_one & criteria_two]   # 获取series_custom的值大于50且小于75的数据
print(both_criteria)




rt_critics = Series(fandango['RottenTomatoes'].values, index=fandango['FILM'])
rt_users = Series(fandango['RottenTomatoes_User'].values, index=fandango['FILM'])
rt_mean = (rt_critics + rt_users) / 2  # 将rt_critics 和 rt_users的值相加除以2
print(rt_mean)