欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python机器学习库xgboost的使用

程序员文章站 2023-11-24 21:01:04
1.数据读取 利用原生xgboost库读取libsvm数据 import xgboost as xgb data = xgb.dmatrix(libsvm文件...

1.数据读取

利用原生xgboost库读取libsvm数据

 import xgboost as xgb
 data = xgb.dmatrix(libsvm文件)

使用sklearn读取libsvm数据

 from sklearn.datasets import load_svmlight_file
 x_train,y_train = load_svmlight_file(libsvm文件)

使用pandas读取完数据后在转化为标准形式

2.模型训练过程

1.未调参基线模型

使用xgboost原生库进行训练

import xgboost as xgb
from sklearn.metrics import accuracy_score

dtrain = xgb.dmatrix(f_train, label = l_train)
dtest = xgb.dmatrix(f_test, label = l_test)
param = {'max_depth':2, 'eta':1, 'silent':0, 'objective':'binary:logistic' }
num_round = 2
bst = xgb.train(param, dtrain, num_round)
train_preds = bst.predict(dtrain)
train_predictions = [round(value) for value in train_preds] #进行四舍五入的操作--变成0.1(算是设定阈值的符号函数)
train_accuracy = accuracy_score(l_train, train_predictions) #使用sklearn进行比较正确率
print ("train accuary: %.2f%%" % (train_accuracy * 100.0))

from xgboost import plot_importance #显示特征重要性
plot_importance(bst)#打印重要程度结果。
pyplot.show()

使用xgbclassifier进行训练

# 未设定早停止, 未进行矩阵变换
from xgboost import xgbclassifier
from sklearn.datasets import load_svmlight_file #用于直接读取svmlight文件形式, 否则就需要使用xgboost.dmatrix(文件名)来读取这种格式的文件
from sklearn.metrics import accuracy_score
from matplotlib import pyplot


num_round = 100
bst1 =xgbclassifier(max_depth=2, learning_rate=1, n_estimators=num_round, #弱分类树太少的话取不到更多的特征重要性
          silent=true, objective='binary:logistic')
bst1.fit(f_train, l_train)

train_preds = bst1.predict(f_train)
train_accuracy = accuracy_score(l_train, train_preds)
print ("train accuary: %.2f%%" % (train_accuracy * 100.0))

preds = bst1.predict(f_test)
test_accuracy = accuracy_score(l_test, preds)
print("test accuracy: %.2f%%" % (test_accuracy * 100.0))

from xgboost import plot_importance #显示特征重要性
plot_importance(bst1)#打印重要程度结果。
pyplot.show()

2.两种交叉验证方式

使用cross_val_score进行交叉验证

#利用model_selection进行交叉训练
from xgboost import xgbclassifier
from sklearn.model_selection import stratifiedkfold
from sklearn.model_selection import cross_val_score
from sklearn.metrics import accuracy_score
from matplotlib import pyplot

param = {'max_depth':2, 'eta':1, 'silent':0, 'objective':'binary:logistic' }
num_round = 100
bst2 =xgbclassifier(max_depth=2, learning_rate=0.1,n_estimators=num_round, silent=true, objective='binary:logistic')
bst2.fit(f_train, l_train)
kfold = stratifiedkfold(n_splits=10, random_state=7)
results = cross_val_score(bst2, f_train, l_train, cv=kfold)#对数据进行十折交叉验证--9份训练,一份测试
print(results)
print("cv accuracy: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100))

from xgboost import plot_importance #显示特征重要性
plot_importance(bst2)#打印重要程度结果。
pyplot.show()

python机器学习库xgboost的使用 

使用gridsearchcv进行网格搜索

#使用sklearn中提供的网格搜索进行测试--找出最好参数,并作为默认训练参数
from xgboost import xgbclassifier
from sklearn.model_selection import gridsearchcv
from sklearn.metrics import accuracy_score
from matplotlib import pyplot

params = {'max_depth':2, 'eta':0.1, 'silent':0, 'objective':'binary:logistic' }
bst =xgbclassifier(max_depth=2, learning_rate=0.1, silent=true, objective='binary:logistic')
param_test = {
 'n_estimators': range(1, 51, 1)
}
clf = gridsearchcv(estimator = bst, param_grid = param_test, scoring='accuracy', cv=5)# 5折交叉验证
clf.fit(f_train, l_train) #默认使用最优的参数


preds = clf.predict(f_test)

test_accuracy = accuracy_score(l_test, preds)
print("test accuracy of gridsearchcv: %.2f%%" % (test_accuracy * 100.0))

clf.cv_results_, clf.best_params_, clf.best_score_
 

3.早停止调参–early_stopping_rounds(查看的是损失是否变化)

#进行提早停止的单独实例
import xgboost as xgb
from xgboost import xgbclassifier
from sklearn.metrics import accuracy_score
from matplotlib import pyplot

param = {'max_depth':2, 'eta':1, 'silent':0, 'objective':'binary:logistic' }
num_round = 100
bst =xgbclassifier(max_depth=2, learning_rate=0.1, n_estimators=num_round, silent=true, objective='binary:logistic')
eval_set =[(f_test, l_test)]
bst.fit(f_train, l_train, early_stopping_rounds=10, eval_metric="error",eval_set=eval_set, verbose=true) #early_stopping_rounds--当多少次的效果差不多时停止  eval_set--用于显示损失率的数据 verbose--显示错误率的变化过程

# make prediction
preds = bst.predict(f_test)

test_accuracy = accuracy_score(l_test, preds)
print("test accuracy: %.2f%%" % (test_accuracy * 100.0))

4.多数据观察训练损失

#多参数顺
import xgboost as xgb
from xgboost import xgbclassifier
from sklearn.metrics import accuracy_score
from matplotlib import pyplot

num_round = 100
bst =xgbclassifier(max_depth=2, learning_rate=0.1, n_estimators=num_round, silent=true, objective='binary:logistic')
eval_set = [(f_train, l_train), (f_test, l_test)]
bst.fit(f_train, l_train, eval_metric=["error", "logloss"], eval_set=eval_set, verbose=true)

# make prediction
preds = bst.predict(f_test)
test_accuracy = accuracy_score(l_test, preds)
print("test accuracy: %.2f%%" % (test_accuracy * 100.0))

python机器学习库xgboost的使用

5.模型保存与读取

#模型保存
bst.save_model('demo.model')

#模型读取与预测
modelfile = 'demo.model'

# 1
bst = xgb.booster({'nthread':8}, model_file = modelfile)

# 2

f_test1 = xgb.dmatrix(f_test) #尽量使用xgboost的自己的数据矩阵
ypred1 = bst.predict(f_test1)
train_predictions = [round(value) for value in ypred1]
test_accuracy1 = accuracy_score(l_test, train_predictions)
print("test accuracy: %.2f%%" % (test_accuracy1 * 100.0))

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。