Coursera机器学习课程笔记(三)
程序员文章站
2024-01-04 16:52:16
...
Coursera机器学习课程笔记(三)
记录作业的解答
1.Sigmoid Function
sigmoid.m文件:
function g = sigmoid(z)
%SIGMOID Compute sigmoid function
% g = SIGMOID(z) computes the sigmoid of z.
% You need to return the following variables correctly
g = zeros(size(z));
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the sigmoid of each value of z (z can be a matrix,
% vector or scalar).
[m,n] = size(z);
for i = 1:m
for j = 1:n
g(i,j) = 1 / (1 + exp(-z(i,j)));
end
end
% =============================================================
end
2.Logistic Regression Cost
与3同时完成,都在costFunction.m文件内
3.Logistic Regression Gradient
costFunction.m文件:
function [J, grad] = costFunction(theta, X, y)
%COSTFUNCTION Compute cost and gradient for logistic regression
% J = COSTFUNCTION(theta, X, y) computes the cost of using theta as the
% parameter for logistic regression and the gradient of the cost
% w.r.t. to the parameters.
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly
J = 0;
grad = zeros(size(theta));
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
% You should set J to the cost.
% Compute the partial derivatives and set grad to the partial
% derivatives of the cost w.r.t. each parameter in theta
%
% Note: grad should have the same dimensions as theta
%
J = (1/m) * (-y' * log(sigmoid(X * theta)) - (1-y)' * log(1 - sigmoid(X * theta)));
for j = 1:length(theta)
grad(j) = (1/m) * X(:,j)' * (sigmoid(X * theta) - y);
end
% =============================================================
end
4.Predict
predict.m文件:
function p = predict(theta, X)
%PREDICT Predict whether the label is 0 or 1 using learned logistic
%regression parameters theta
% p = PREDICT(theta, X) computes the predictions for X using a
% threshold at 0.5 (i.e., if sigmoid(theta'*x) >= 0.5, predict 1)
m = size(X, 1); % Number of training examples
% You need to return the following variables correctly
p = zeros(m, 1);
% ====================== YOUR CODE HERE ======================
% Instructions: Complete the following code to make predictions using
% your learned logistic regression parameters.
% You should set p to a vector of 0's and 1's
%
for i = 1:m
if sigmoid(X(i,:) * theta) >= 0.5
p(i) = 1;
else
p(i) = 0;
end
end
% =========================================================================
end
5.Regularized Logistic Regression Cost
与6同时完成,都在costFunctionReg.m文件内
6.Regularized Logistic Regression Gradient
costFunctionReg.m文件:
function [J, grad] = costFunctionReg(theta, X, y, lambda)
%COSTFUNCTIONREG Compute cost and gradient for logistic regression with regularization
% J = COSTFUNCTIONREG(theta, X, y, lambda) computes the cost of using
% theta as the parameter for regularized logistic regression and the
% gradient of the cost w.r.t. to the parameters.
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly
J = 0;
grad = zeros(size(theta));
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
% You should set J to the cost.
% Compute the partial derivatives and set grad to the partial
% derivatives of the cost w.r.t. each parameter in theta
sum = 0;
%根据公式,注意theta(1)不参与计算
for j = 2:length(theta)
sum = sum + theta(j) ^ 2;
end
J = (1/m) * (-y' * log(sigmoid(X * theta)) - (1-y)' * log(1 - sigmoid(X * theta))) + lambda/(2*m) * sum;
%根据公式,注意grad(1)不用考虑正则化
grad(1) = (1/m) * X(:,1)' * (sigmoid(X * theta) - y);
for j = 2:length(theta)
grad(j) = (1/m) * X(:,j)' * (sigmoid(X * theta) - y) + lambda/m * theta(j) ;
end
% =============================================================
end