欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Coursera机器学习课程笔记(三)

程序员文章站 2024-01-04 16:52:16
...

Coursera机器学习课程笔记(三)

记录作业的解答

1.Sigmoid Function

sigmoid.m文件:

function g = sigmoid(z)
%SIGMOID Compute sigmoid function
%   g = SIGMOID(z) computes the sigmoid of z.

% You need to return the following variables correctly 
g = zeros(size(z));

% ====================== YOUR CODE HERE ======================
% Instructions: Compute the sigmoid of each value of z (z can be a matrix,
%               vector or scalar).

[m,n] = size(z);

for i = 1:m
    for j = 1:n
        g(i,j) = 1 / (1 + exp(-z(i,j)));
    end
end

% =============================================================

end

2.Logistic Regression Cost

与3同时完成,都在costFunction.m文件内

3.Logistic Regression Gradient

costFunction.m文件:

function [J, grad] = costFunction(theta, X, y)
%COSTFUNCTION Compute cost and gradient for logistic regression
%   J = COSTFUNCTION(theta, X, y) computes the cost of using theta as the
%   parameter for logistic regression and the gradient of the cost
%   w.r.t. to the parameters.

% Initialize some useful values
m = length(y); % number of training examples

% You need to return the following variables correctly 
J = 0;
grad = zeros(size(theta));

% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
%               You should set J to the cost.
%               Compute the partial derivatives and set grad to the partial
%               derivatives of the cost w.r.t. each parameter in theta
%
% Note: grad should have the same dimensions as theta
%

J = (1/m) * (-y' * log(sigmoid(X * theta)) - (1-y)' * log(1 - sigmoid(X * theta)));

for j = 1:length(theta)
    grad(j) = (1/m) * X(:,j)' * (sigmoid(X * theta) - y);
end
% =============================================================

end

4.Predict

predict.m文件:

function p = predict(theta, X)
%PREDICT Predict whether the label is 0 or 1 using learned logistic 
%regression parameters theta
%   p = PREDICT(theta, X) computes the predictions for X using a 
%   threshold at 0.5 (i.e., if sigmoid(theta'*x) >= 0.5, predict 1)

m = size(X, 1); % Number of training examples

% You need to return the following variables correctly
p = zeros(m, 1);

% ====================== YOUR CODE HERE ======================
% Instructions: Complete the following code to make predictions using
%               your learned logistic regression parameters. 
%               You should set p to a vector of 0's and 1's
%

for i = 1:m
    if sigmoid(X(i,:) * theta) >= 0.5
        p(i) = 1;
    else
        p(i) = 0;
    end
end
% =========================================================================
end

5.Regularized Logistic Regression Cost

与6同时完成,都在costFunctionReg.m文件内

6.Regularized Logistic Regression Gradient

costFunctionReg.m文件:

function [J, grad] = costFunctionReg(theta, X, y, lambda)
%COSTFUNCTIONREG Compute cost and gradient for logistic regression with regularization
%   J = COSTFUNCTIONREG(theta, X, y, lambda) computes the cost of using
%   theta as the parameter for regularized logistic regression and the
%   gradient of the cost w.r.t. to the parameters. 

% Initialize some useful values
m = length(y); % number of training examples

% You need to return the following variables correctly 
J = 0;
grad = zeros(size(theta));

% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
%               You should set J to the cost.
%               Compute the partial derivatives and set grad to the partial
%               derivatives of the cost w.r.t. each parameter in theta

sum = 0;
%根据公式,注意theta(1)不参与计算
for j = 2:length(theta)
    sum = sum + theta(j) ^ 2;
end
J = (1/m) * (-y' * log(sigmoid(X * theta)) - (1-y)' * log(1 - sigmoid(X * theta))) + lambda/(2*m) * sum;

%根据公式,注意grad(1)不用考虑正则化
grad(1) = (1/m) * X(:,1)' * (sigmoid(X * theta) - y);
for j = 2:length(theta)
    grad(j) = (1/m) * X(:,j)' * (sigmoid(X * theta) - y) + lambda/m * theta(j) ;
end


% =============================================================

end

上一篇:

下一篇: