欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Python __call__()方法 __init__()方法

程序员文章站 2024-01-03 12:22:40
__call__()方法作用在于:类–>实例化–>实例也能当成一个可调用对象net = Net() #类的实例out = net(input) #实例也能当成一个可调用对象import torchimport torch.nn as nnimport torch.nn.functional as Fclass Net(nn.Module): def __init__(self): super(Net, self).__init__()...

__call__()方法作用在于:
类–>实例化–>实例也能当成一个可调用对象
net = Net() #类的实例
out = net(input) #实例也能当成一个可调用对象

import torch
import torch.nn as nn
import torch.nn.functional as F


class Net(nn.Module):

    def __init__(self):
        super(Net, self).__init__()
        # 输入图像channel:1;输出channel:6;5x5卷积核
        self.conv1 = nn.Conv2d(1, 6, 5)
        self.conv2 = nn.Conv2d(6, 16, 5)
        # an affine operation: y = Wx + b
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        # 2x2 Max pooling
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        # 如果是方阵,则可以只使用一个数字进行定义
        x = F.max_pool2d(F.relu(self.conv2(x)), 2)
        x = x.view(-1, self.num_flat_features(x))
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

    def num_flat_features(self, x):
        size = x.size()[1:]  # 除去批处理维度的其他所有维度
        num_features = 1
        for s in size:
            num_features *= s
        return num_features


net = Net()
print(net)

params = list(net.parameters())
print(len(params))
print(params[0].size())  # conv1's .weight

input = torch.randn(1, 1, 32, 32)
out = net(input)
print(out)


文章:
http://c.biancheng.net/view/2380.html

class CLanguage:
    # 定义__call__方法
    def __call__(self,name,add):
        print("调用__call__()方法",name,add)

clangs = CLanguage()
clangs("C语言中文网","http://c.biancheng.net")

Python 中,凡是可以将 () 直接应用到自身并执行,都称为可调用对象。可调用对象包括自定义的函数、Python 内置函数以及本节所讲的类实例对象。

文章:
https://blog.csdn.net/Yaokai_AssultMaster/article/details/70256621

本文地址:https://blog.csdn.net/x1131230123/article/details/110943513

相关标签: python语言

上一篇:

下一篇: