欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

cifar10 卷积

程序员文章站 2023-12-31 16:57:28
...
import cifar10_input
import tensorflow as tf
import numpy as np

batch_size = 128
data_dir = 'cifar-10-batches-bin'
print('begin')
images_train, labels_train = cifar10_input.inputs(eval_data=False, data_dir=data_dir, batch_size=batch_size)
images_test, labels_test = cifar10_input.inputs(eval_data=True, data_dir=data_dir, batch_size=batch_size)
print('begin data')


def weight_variable(shape):
    return tf.Variable(tf.truncated_normal(shape, stddev=0.1))


def biase_variable(shape):
    return tf.Variable(tf.constant(0.1, shape=shape))


def conv2d(x, W):
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')


def max_pool_2x2(x):
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')


def avg_pool_6x6(x):
    return tf.nn.avg_pool(x, ksize=[1, 6, 6, 1], strides=[1, 6, 6, 1], padding='SAME')


x = tf.placeholder(tf.float32, [None, 24, 24, 3])  # (?, 24, 24, 3)
y = tf.placeholder(tf.float32, [None, 10])  # Tensor("Placeholder_1:0", shape=(?, 10), dtype=float32)


W_conv1 = weight_variable([5, 5, 3, 64])
b_conv1 = biase_variable([64])

x_image = tf.reshape(x, [-1, 24, 24, 3])  # Tensor("Reshape_2:0", shape=(?, 24, 24, 3), dtype=float32)

h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)  # (?, 24, 24, 64)
h_pool1 = max_pool_2x2(h_conv1)  # (?, 12, 12, 64)

W_conv2 = weight_variable([5, 5, 64, 64])
b_conv2 = biase_variable([64])

h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

W_conv3 = weight_variable([5, 5, 64, 10])
b_conv3 = biase_variable([10])

h_conv3 = tf.nn.relu(conv2d(h_pool2, W_conv3) + b_conv3)  # (?, 6, 6, 10)

nt_hpool3 = avg_pool_6x6(h_conv3)  # (?, 1, 1, 10)
nt_hpool3_flat = tf.reshape(nt_hpool3, [-1, 10])  # (?, 10)
y_conv = tf.nn.softmax(nt_hpool3_flat)  # (?, 10)

cross_entropy = -tf.reduce_sum(y * tf.log(y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

sess = tf.Session()
sess.run(tf.global_variables_initializer())
tf.train.start_queue_runners(sess=sess)
for i in range(10000):
    image_batch, label_batch = sess.run([images_train, labels_train])  # (128, 24, 24, 3) (128,)
    print(label_batch)
    label_b = np.eye(10, dtype=float)[label_batch]  # label_batch确定1的位置
    train_step.run(feed_dict={x: image_batch, y: label_b}, session=sess)
    if i % 200 == 0:
        train_accuracy = accuracy.eval(feed_dict={x: image_batch, y: label_b}, session=sess)
        print('step %d, training accuracy %g' % (i, train_accuracy))

print('finished! test accuracy %g' % accuracy.eval(feed_dict={x: image_batch, y: label_batch}, session=sess))

上一篇:

下一篇: