欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Numpy入门(二)Numpy常用函数

程序员文章站 2023-12-27 18:13:09
...

常用函数

1 文件读写

import numpy as np
i2 = np.eye(2)
i2
array([[1., 0.],
       [0., 1.]])
i2.dtype
dtype('float64')
np.savetxt('eye.txt',i2)

2 CSV文件读写

可以看到,使用逗号分隔符,usecols指定了特定的列,unpack表示将选择的列拆分成多个数据,分别接收

c,v = np.loadtxt('data.csv',delimiter=',',usecols=(6,7),unpack = True)
c
336.1
v
21144800.0

3 成交量加权平均价格(VWAP)

vwap = np.average(c,weights =v)
vwap
336.1
mean = np.mean(c)
mean
336.1

4 取值范围

h,l = np.loadtxt('data.csv',delimiter=',',usecols =(4,5),unpack = True)
h
344.4
l
333.53
np.max(h)
344.4
np.min(l)
333.53
np.ptp(h)
0.0
median = np.median(c)
median
336.1
a = np.random.randn(10)
a
array([-0.91366364,  0.56874779,  1.93163306, -1.20680229,  0.61898735,
       -0.03009919,  1.0977881 , -1.69915867, -0.54960063, -0.38438985])
sorted_close = np.msort(a)
sorted_close
array([-1.69915867, -1.20680229, -0.91366364, -0.54960063, -0.38438985,
       -0.03009919,  0.56874779,  0.61898735,  1.0977881 ,  1.93163306])
np.median(a)
-0.20724452344036656
np.mean(a)
-0.05665579774572808
np.var(a)
1.123988115028372
np.diff(a)
array([ 1.48241142,  1.36288528, -3.13843535,  1.82578963, -0.64908654,
        1.1278873 , -2.79694677,  1.14955804,  0.16521078])
a
array([-0.91366364,  0.56874779,  1.93163306, -1.20680229,  0.61898735,
       -0.03009919,  1.0977881 , -1.69915867, -0.54960063, -0.38438985])
returns = np.diff(a)/a[:-1]
returns
array([ -1.62249143,   2.39629113,  -1.62475752,  -1.51291529,
        -1.04862651, -37.47234271,  -2.54780204,  -0.67654543,
        -0.30060151])
np.std(returns)
11.57815124733535
np.where(returns>0)
(array([1]),)
np.sqrt(1/12)
0.0
np.sqrt (1./12)
0.28867513459481287
a = np.arange(10)
indices = np.where(a>5)
np.take(a,indices)
array([[6, 7, 8, 9]])
np.argmin(a)
0
np.argmax(a)
9
np.ones(5)
array([1., 1., 1., 1., 1.])
a = np.ones(10)
a.fill(5)
a
array([5., 5., 5., 5., 5., 5., 5., 5., 5., 5.])
np.ones(shape=(2,3),dtype = np.int32)
array([[1, 1, 1],
       [1, 1, 1]], dtype=int32)

np.dot 如果处理的是一维数据,那么就是点积,如果处理二维数据,就是矩阵的乘积

a = np.arange(9)
b = np.arange(9)
np.dot(a,b)
204
a = a.reshape(3,3)
a
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])
b = b.reshape(3,3)
np.dot(a,b)
array([[ 15,  18,  21],
       [ 42,  54,  66],
       [ 69,  90, 111]])
b.clip(3,6)
array([[3, 3, 3],
       [3, 4, 5],
       [6, 6, 6]])
a = np.arange(9)
a.compress(a>2)
array([3, 4, 5, 6, 7, 8])
a = np.arange(1,9)
a.prod()
40320
a.cumprod()
array([    1,     2,     6,    24,   120,   720,  5040, 40320])
相关标签: Numpy常用函数

上一篇:

下一篇: