欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

数学建模 图论最短路径问题

程序员文章站 2023-12-27 14:04:33
...

1、图的基本概念

图论中的图(Graph)是由若干给定的点及连接两点的线 所构成的图形,这种图形通常用来描述某些事物之间的某种 特定关系,用点代表事物,用连接两点的线表示相应两个事 物间具有这种关系。
一个图可以用数学语言描述为G(V(G),E(G))。V(vertex)指 的是图的顶点集,E(edge)指的是图的边集。根据边是否有方向,可将图分为有向图(图一)和无向图(图二)。另外,有些图的边上还可能有权值,这样的图称为有权图(图三)。
数学建模 图论最短路径问题

2、作图

1、在线作图

2、matlab作图

%% Matlab作无向图
%1)无权重(每条边的权重默认为1% 函数graph(s,t):可在 s 和 t 中的对应节点之间创建边,并生成一个图
% s 和 t 都必须具有相同的元素数;这些节点必须都是从1开始的正整数,或都是字符串元胞数组。
s1 = [1,2,3,4];
t1 = [2,3,1,1];
G1 = graph(s1, t1);
plot(G1)
% 注意哦,编号最好是从1开始连续编号,不要自己随便定义编号
s1 = [1,2,3,4];
t1 = [2,3,1,1];
G1 = graph(s1, t1);
plot(G1)

% 注意字符串元胞数组是用大括号包起来的哦
s2 = {'学校','电影院','网吧','酒店'};
t2 = {'电影院','酒店','酒店','KTV'};
G2 = graph(s2, t2);
plot(G2, 'linewidth', 2)  % 设置线的宽度
% 下面的命令是在画图后不显示坐标
set( gca, 'XTick', [], 'YTick', [] );  

%2)有权重
% 函数graph(s,t,w):可在 s 和 t 中的对应节点之间以w的权重创建边,并生成一个图
s = [1,2,3,4];
t = [2,3,1,1];
w = [3,8,9,2];
G = graph(s, t, w);
plot(G, 'EdgeLabel', G.Edges.Weight, 'linewidth', 2) 
set( gca, 'XTick', [], 'YTick', [] );  

%% Matlab作有向图
% 无权图 digraph(s,t)
s = [1,2,3,4,1];
t = [2,3,1,1,4];
G = digraph(s, t);
plot(G)
set( gca, 'XTick', [], 'YTick', [] );  

% 有权图 digraph(s,t,w)
s = [1,2,3,4];
t = [2,3,1,1];
w = [3,8,9,2];
G = digraph(s, t, w);
plot(G, 'EdgeLabel', G.Edges.Weight, 'linewidth', 2) 
set( gca, 'XTick', [], 'YTick', [] );  

3、无向图的权重邻接矩阵

数学建模 图论最短路径问题

4、迪杰斯特拉算法

在线观看算法
缺点:不能计算带有负权重的图

5、Bellman‐Ford(贝尔曼‐福特)算法

刚刚改变访问状态的节点为0号节点(A) 我们要更新与0号节点相邻的节点信息(B),注意, 这里的B节点是未访问的哦 更新的规则如下: 如果(A与B的距离+ A列表中的距离)小于(B列表中 的距离),那么我们就将B列表中的距离更新为较小的 距离,并将B的父亲节点更新为A
事实上,贝尔曼‐福特算法不再将节点区分为是否已 访问的状态,因为贝尔曼‐福特模型是利用循环来进 行更新权重的,且每循环一次,贝尔曼福特算法都会 更新所有的节点的信息。
贝尔曼‐福特算法不支持含有负权回路的图。 (Floyd(弗洛伊德)算法也不可以)
负权回路:在一个图里每条边都有一个权值(有正有负) 如果存在一个环(从某个点出发又回到自己的路径),而且 这个环上所有权值之和是负数,那这就是一个负权环,也叫负权 回路。存在负权回路的图是不能求两点间最短路的,因为只要在负 权回路上不断兜圈子,所得的最短路长度可以任意小。

6、matlab计算最短路径

可用的算法:
数学建模 图论最短路径问题

% 注意哦,Matlab中的图节点要从1开始编号,所以这里把0全部改为了9
% 编号最好是从1开始连续编号,不要自己随便定义编号
s = [9 9 1 1 2 2 2 7 7 6 6  5  5 4];
t = [1 7 7 2 8 3 5 8 6 8 5  3  4 3];
w = [4 8 3 8 2 7 4 1 6 6 2 14 10 9];
G = graph(s,t,w);
plot(G, 'EdgeLabel', G.Edges.Weight, 'linewidth', 2) 
set( gca, 'XTick', [], 'YTick', [] );  
[P,d] = shortestpath(G, 9, 4)  %注意:该函数matlab2015b之后才有哦

% 在图中高亮我们的最短路径
myplot = plot(G, 'EdgeLabel', G.Edges.Weight, 'linewidth', 2);  %首先将图赋给一个变量
highlight(myplot, P, 'EdgeColor', 'r')   %对这个变量即我们刚刚绘制的图形进行高亮处理(给边加上r红色)

% 求出任意两点的最短路径矩阵
D = distances(G)   %注意:该函数matlab2015b之后才有哦
D(1,2)  % 1 -> 2的最短路径
D(9,4)  % 9 -> 4的最短路径

% 找出给定范围内的所有点  nearest(G,s,d)
% 返回图形 G 中与节点 s 的距离在 d 之内的所有节点
[nodeIDs,dist] = nearest(G, 2, 10)   %注意:该函数matlab2016a之后才有哦
相关标签: 数学建模

上一篇:

下一篇: