欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

数据结构 第六章 图

程序员文章站 2023-12-24 09:22:09
...

6.1 图的逻辑结构

图是由顶点的有穷非空集合和顶点之间边的集合组成,通常表示为: G=(V,E)
其中:G表示一个图,V是图G中顶点的集合,E是图G中顶点之间边的集合。
在线性表中,元素个数可以为零,称为空表;
在树中,结点个数可以为零,称为空树;
在图中,顶点个数不能为零,但可以没有边。

若顶点vi和vj之间的边没有方向,则称这条边为无向边,表示为(vi,vj)。
如果图的任意两个顶点之间的边都是无向边,则称该图为无向图
若从顶点vi到vj的边有方向,则称这条边为有向边,表示为<vi,vj>。
如果图的任意两个顶点之间的边都是有向边,则称该图为有向图
简单图:在图中,若不存在顶点到其自身的边,且同一条边不重复出现。

数据结构中讨论的都是简单图。

邻接、依附
无向图中,对于任意两个顶点vi和顶点vj,若存在边(vi,vj),则称顶点vi和顶点vj互为邻接点,同时称边(vi,vj)依附于顶点vi和顶点vj
有向图中,对于任意两个顶点vi和顶点vj,若存在弧<vi,vj>,则称顶点vi邻接到顶点vj,顶点vj邻接自顶点vi,同时称弧<vi,vj>依附于顶点vi和顶点vj

在线性结构中,数据元素之间仅具有线性关系;
在树结构中,结点之间具有层次关系;
在图结构中,任意两个顶点之间都可能有关系。

无向完全图:在无向图中,如果任意两个顶点之间都存在边,则称该图为无向完全图。
有向完全图:在有向图中,如果任意两个顶点之间都存在方向相反的两条弧,则称该图为有向完全图。
含有n个顶点的无向完全图n×(n-1)/2条边。
含有n个顶点的有向完全图有**n×(n-1)**条边。

稀疏图:称边数很少的图为稀疏图;
稠密图:称边数很多的图为稠密图。

顶点的度:在无向图中,顶点v的度是指依附于该顶点的边数,通常记为TD (v)。
顶点的入度:在有向图中,顶点v的入度是指以该顶点为弧头的弧的数目,记为ID (v);
顶点的出度:在有向图中,顶点v的出度是指以该顶点为弧尾的弧的数目,记为OD (v)。

在具有n个顶点、e条边的无向图G中,各顶点的度之和与边数之和的关系?
数据结构 第六章 图在具有n个顶点、e条边的有向图G中,各顶点的入度之和与各顶点的出度之和的关系?与边数之和的关系?
数据结构 第六章 图
权:是指对边赋予的有意义的数值量。
网:边上带权的图,也称网图。
路径:在无向图G=(V, E)中,从顶点vp到顶点vq之间的路径是一个顶点序列(vp=vi0,vi1,vi2, …, vim=vq),其中,(vij1,vij)∈E(1≤j≤m)。若G是有向图,则路径也是有方向的,顶点序列满足<vij-1,vij>∈E。
数据结构 第六章 图回路(环):第一个顶点和最后一个顶点相同的路径。
简单路径:序列中顶点不重复出现的路径。
简单回路(简单环):除了第一个顶点和最后一个顶点外,其余顶点不重复出现的回路。
子图:若图G=(V,E),G’=(V’,E’),如果V’⊆V 且E’ ⊆ E ,则称图G’是G的子图。
连通图:在无向图中,如果从一个顶点vi到另一个顶点vj(i≠j)有路径,则称顶点vi和vj是连通的。如果图中任意两个顶点都是连通的,则称该图是连通图。
连通分量:非连通图的极大连通子图称为连通分量。
数据结构 第六章 图强连通图:在有向图中,对图中任意一对顶点vji和vj (i≠j),若从顶点vi到顶点vj和从顶点vj到顶点vi均有路径,则称该有向图是强连通图。
强连通分量:非强连通图的极大强连通子图。
生成树:n个顶点的连通图G的生成树是包含G中全部顶点的一个极小连通子图
数据结构 第六章 图生成森林:在非连通图中,由每个连通分量都可以得到一棵生成树,这些连通分量的生成树就组成了一个非连通图的生成森林。

  • 图的遍历操作

图的遍历是从图中某一顶点出发,对图中所有顶点访问一次且仅访问一次。

  1. 在图中,如何选取遍历的起始顶点?

解决方案:从编号小的顶点开始 。
在线性表中,数据元素在表中的编号就是元素在序列中的位置,因而其编号是唯一的;
在树中,将结点按层序编号,由于树具有层次性,因而其层序编号也是唯一的;
在图中,任何两个顶点之间都可能存在边,顶点是没有确定的先后次序的,所以,顶点的编号不唯一。
为了定义操作的方便,将图中的顶点按任意顺序排列起来,比如,按顶点的存储顺序。

  1. 从某个起点始可能到达不了所有其它顶点,怎么办?

解决方案:多次调用从某顶点出发遍历图的算法。

  1. 因图中可能存在回路,某些顶点可能会被重复访问,那么如何避免遍历不会因回路而陷入死循环?

解决方案:附设访问标志数组visited[n] 。

  1. 在图中,一个顶点可以和其它多个顶点相连,当这样的顶点访问过后,如何选取下一个要访问的顶点?

解决方案:深度优先遍历和广度优先遍历。

1.深度优先遍历 (DFS:Depth First Search)
⑴ 访问顶点v;
⑵ 从v的未被访问的邻接点中选取一个顶点w,从w出发进行深度优先遍历;
⑶ 重复上述两步,直至图中所有和v有路径相通的顶点都被访问到。
2.广度优先遍历 (BFS:Broad First Search ;FIFO: First In First Out)
⑴ 访问顶点v;
⑵ 依次访问v的各个未被访问的邻接点v1, v2, …, vk;
⑶ 分别从v1,v2,…,vk出发依次访问它们未被访问的邻接点,并使“先被访问顶点的邻接点”先于“后被访问顶点的邻接点”被访问。直至图中所有与顶点v有路径相通的顶点都被访问到。

6.2 图的存储结构及实现

基本思想:
用一个一维数组存储图中顶点的信息
用一个二维数组(称为邻接矩阵)存储图中各顶点之间的邻接关系。
假设图G=(V,E)有n个顶点,则邻接矩阵是一个n×n的方阵,定义为:
数据结构 第六章 图无向图的邻接矩阵
无向图的邻接矩阵的特点:
主对角线为 0 且一定是对称矩阵。
求顶点i的度:
邻接矩阵的第i行(或第i列)非零元素的个数。
判断顶点 i 和 j 之间是否存在边:
测试邻接矩阵中相应位置的元素arc[i][j]是否为1。
求顶点 i 的所有邻接点:
将数组中第 i 行元素扫描一遍,若arc[i][j]为1,则顶点 j 为顶点 i 的邻接点。
有向图的邻接矩阵
有向图的邻接矩阵一定不对称?
不一定,例如有向完全图。
求顶点 i 的出度:
邻接矩阵的第 i 行元素之和。
求顶点 i 的入度:
邻接矩阵的第 i 列元素之和。
判断从顶点 i 到顶点 j 是否存在边:
测试邻接矩阵中相应位置的元素arc[i][j]是否为1。
网图的邻接矩阵
网图邻接矩阵可定义为的:
数据结构 第六章 图邻接矩阵存储无向图的类

const int MaxSize=10; 
template <class T>
class Mgraph{
   public:
      MGraph(T a[ ], int n, int e );   
       ~MGraph( )
       void DFSTraverse(int v); 
       void BFSTraverse(int v);
        ……
   private:
       T vertex[MaxSize]; 
       int arc[MaxSize][MaxSize]; 
       int vertexNum, arcNum; 
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 构造函数MGraph(T a[ ], int n, int e );

1、确定图的顶点个数和边的个数;
2、输入顶点信息存储在一维数组vertex中;
3、初始化邻接矩阵;
4、依次输入每条边存储在邻接矩阵arc中;
4.1 输入边依附的两个顶点的序号i, j;
4.2 将邻接矩阵的第i行第j列的元素值置为1;
4.3 将邻接矩阵的第j行第i列的元素值置为1;

template <class T>
MGraph::MGraph(T a[ ], int n, int e) {
    vertexNum=n; arcNum=e;
    for (i=0; i<vertexNum; i++) 
        vertex[i]=a[i];
    for (i=0; i<vertexNum; i++)    //初始化邻接矩阵
	   for (j=0; j<vertexNum; j++)
           arc[i][j]=0;             
    for (k=0; k<arcNum; k++) {
        cin>>i>>j;     //边依附的两个顶点的序号
        arc[i][j]=1;  arc[j][i]=1;  //置有边标志    
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 深度优先遍历

⑴ 访问顶点v;
⑵ 从v的未被访问的邻接点中选取一个顶点w,从w出发进行深度优先遍历;
⑶ 重复上述两步,直至图中所有和v有路径相通的顶点都被访问到。
递归定义

int visited[MaxSize];
template <class T>
void MGraph::DFSTraverse(int v)  
{
     cout<<vertex[v]; visited [v]=1;
     for (j=0; j<vertexNum; j++)
         if (arc[v][j]==1 && visited[j]==0)
           DFSTraverse( j );
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 广度优先遍历

⑴ 访问顶点v;
⑵ 依次访问v的各个未被访问的邻接点v1, v2, …, vk;
⑶ 分别从v1,v2,…,vk出发依次访问它们未被访问的邻接点,并使“先被访问顶点的邻接点”先于“后被访问顶点的邻接点”被访问。直至图中所有与顶点v有路径相通的顶点都被访问到。

int visited[MaxSize];
template <class T>
void MGraph::BFSTraverse(int v){     
    front=rear=-1;   //假设采用顺序队列且不会发生溢出
   int Q[MaxSize]; cout<<vertex[v]; visited[v]=1;  Q[++rear]=v; 
    while (front!=rear)    {
         v=Q[++front];   
         for (j=0; j<vertexNum; j++)
            if (arc[v][j]==1 && visited[j]==0 ) {
                  cout<<vertex[j]; visited[j]=1; Q[++rear]=j;
            }
      }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

邻接表
邻接表存储的基本思想:
对于图的每个顶点vi,将所有邻接于vi的顶点链成一个单链表,称为顶点vi的边表(对于有向图则称为出边表)
所有边表的头指针和存储顶点信息的一维数组构成了顶点表。
邻接表有两种结点结构:顶点表结点和边表结点。
数据结构 第六章 图vertex:数据域,存放顶点信息。
firstedge:指针域,指向边表中第一个结点。
adjvex:邻接点域,边的终点在顶点表中的下标。
next:指针域,指向边表中的下一个结点。

定义邻接表的结点 :

struct ArcNode
{   
      int adjvex; 
      ArcNode *next;
};
template <class T>
struct VertexNode 
{
      T vertex;
      ArcNode *firstedge;
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 无向图的邻接表

边表中的结点表示:
每个结点对应图中的一条边,
邻接表的空间复杂度为O(n+e)。
求顶点 i 的度:
顶点i的边表中结点的个数。
判断顶点 i 和顶点 j之间是否存在边:
测试顶点 i 的边表中是否存在终点为 j 的结点。

  • 有向图的邻接表(出边表)

求顶点 i 的出度:
顶点 i 的出边表中结点的个数。
求顶点 i 的入度:
各顶点的出边表中以顶点 i 为终点的结点个数。
求顶点 i 的所有邻接点:
遍历顶点 i 的边表,该边表中的所有终点都是顶点 i 的邻接点。

  • 邻接表存储有向图的类
const int MaxSize=10;    //图的最大顶点数
template <class T>
class ALGraph
{    
   public:
       ALGraph(T a[ ], int n, int e);   
       ~ALGraph;    
       void DFSTraverse(int v);      
       void BFSTraverse(int v);      
   ………
  private:
       VertexNode adjlist[MaxSize];   
       int vertexNum, arcNum;       
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 构造函数
  • 确定图的顶点个数和边的个数;
  • 输入顶点信息,初始化该顶点的边表;
  • 依次输入边的信息并存储在边表中;
    3.1 输入边所依附的两个顶点的序号i和j;
    3.2 生成邻接点序号为j的边表结点s;
    3.3 将结点s插入到第i个边表的头部;
template <class T>
ALGraph::ALGraph(T a[ ], int n, int e)
{   
    vertexNum=n; arcNum=e; 
    for (i=0; i<vertexNum; i++)   
    {
       adjlist[i].vertex=a[i];
       adjlist[i].firstedge=NULL;      
    } 
    for (k=0; k<arcNum; k++)   
    {
         cin>>i>>j;    
         s=new ArcNode;s->adjvex=j;  	        
         s->next=adjlist[i].firstedge;    
         adjlist[i].firstedge=s;
     }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 深度优先遍历
template <class T>
void ALGraph::DFSTraverse(int v){        
    cout<<adjlist[v].vertex;  visited[v]=1;
    p=adjlist[v].firstedge;    
    while (p!=NULL)     {
        j=p->adjvex;
        if (visited[j]==0) DFSTraverse(j);
    p=p->next;           
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 广度优先遍历
template <class T>
void ALGraph::BFSTraverse(int v){
   front=rear=-1;   
   cout<<adjlist[v].vertex;    visited[v]=1;   Q[++rear]=v;   
   while (front!=rear)  {
       v=Q[++front];    p=adjlist[v].firstedge;    
       while (p!=NULL)  {
            j= p->adjvex;
            if (visited[j]==0) {
                cout<<adjlist[j].vertex;  visited[j]=1; Q[++rear]=j;
            }
            p=p->next;
       }
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 十字链表:有向图的链式存储结构
    数据结构 第六章 图
  • 邻接多重表 :无向图的存储结构
    数据结构 第六章 图
  • 边集数组

利用两个一维数组
一个数组存储顶点信息,另外一个数组存储边及其权
其中,数组分量包含三个域:边所依附的两个顶点,权值
各边在数组中的次序可以任意。

应用举例——最小生成树

生成树的代价:设G=(V,E)是一个无向连通网,生成树上各边的权值之和称为该生成树的代价。
最小生成树:在图G所有生成树中,代价最小的生成树称为最小生成树。
普里姆(Prim)算法
基本思想:
设G=(V, E)是具有n个顶点的连通网,
T=(U, TE)是G的最小生成树,
T的初始状态为U={u0}(u0∈V),TE={ },
重复执行下述操作:
在所有u∈U,v∈V-U的边中找一条代价最小的边(u, v)并入集合TE,同时v并入U,直至U=V。

Prim算法——伪代码:

  1. 初始化两个辅助数组lowcost(=arc[0][i])和adjvex(=0)(0是始点);
  2. 输出顶点u0,将顶点u0加入集合U中;
  3. 重复执行下列操作n-1次
    3.1 在lowcost中选取最短边(lowcost[k]),取对应的顶点序号k;
    3.2 输出顶点k和对应的权值;
    3.3 将顶点k加入集合U中(lowcost[k]=0);
    3.4 调整数组lowcost和adjvex;
Void prime(MGraph G){
    for(int i=1;i<G.vertexNu;i++){
        lowcost[i]=G.arc[0][i];  adjvex[i]=0;
    }
    lowcost[0]=0;
    for(i=1;i<G.vertexNum;i+++){
        k=MinEdge(lowcost,G.vertexNum)
        cout<<K<<adjvex[k]<<lowcost[k];
        lowcost[k]=0;
        for(j=1;j<G.vertexNum;j++)
         if((G.arc[k][j]<lowcost[j]){
              lowcost[j]=G.arc[k][j];
              arcvex[j]=k;
           }
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

克鲁斯卡尔(Kruskal)算法
1、设无向连通网为G=(V, E),令G的最小生成树为T=(U, TE),其初态为U=V,TE={ },
2、然后,按照边的权值由小到大的顺序,考察G的边集E中的各条边。
2.1.若被考察的边的两个顶点属于T的两个不同的连通分量,则将此边作为最小生成树的边加入到T中,同时把两个连通分量连接为一个连通分量;
2.2.若被考察边的两个顶点属于同一个连通分量,则舍去此边,以免造成回路,
3、如此下去,当T中的连通分量个数为1时,此连通分量便为G的一棵最小生成树。

Kruskal算法思想:

  1. 初始化:U=V; TE={ };
  2. 循环直到T中的连通分量个数为1
    2.1 在E中寻找最短边(u,v);
    2.2 如果顶点u、v位于T的两个不同连通分量,则
    2.2.1 将边(u,v)并入TE;
    2.2.2 将这两个连通分量合为一个;
    2.3 在E中标记边(u,v),使得(u,v)不参加后续最短边的选取;

Kruskal算法实现中的三个关键问题:

  1. 图的存储结构:采用边集数组存储图。
  2. 如何判断一条边所依附的两个顶点在同一个连通分两中(并查集)
    定义Parent[i]数组。数组分量的值表示顶点i的双亲节点(初值为-1;)
    当一条边(u,v)的两个顶点的根结不同时,这两个结点属于不同的连通分量(利用parent 数组查找一棵树的根节点。当一个结点n的parent==-1,树的根节点即为n)
  3. 如何将一条边所依附的两个顶点合并到同一个连通分量中
    要进行联通分量的合并 ,其中一个顶点所在的树的根节点为vex1,另一个顶点所在的树的根节点为vex2,则:parent[vex2]=vex1;
int main(){
    int arcNum, int vertexNum;
    EdgeNode *edge;
    int *parent;

    cout<<"please input the number of vertexNum:"; cin>>vertexNum;
    cout<<"please input the number of edges:";	cin>>arcNum;
    edge=new EdgeNode[arcNum];	parent=new int[vertexNum];
    for(int i=0;i<arcNum;i++)	{
 	cout<<"Please input the edges:";
	cin>>edge[i].from>>edge[i].to>>edge[i].weight;
    }
    sort(edges, G); //对边集数组进行堆排序,时间复杂性为O(eloge)
    for (i=0;i<vertexNum;i++)
	parent[i]=-1;  //每个节点分属于不同的集合

    int k=0,begin,end,count=0;
    cout<<"next is the MST :"<<endl;
  for (k=0;k<arcNum;k++)	{
         begin=edge[k].from;	end=edge[k].to;	
         int m,n;
        m=Find(parent,begin);	n=Find(parent,end);
        if(m!=n)	{
            cout<<begin<<","<<end<<","<<edge[k].weight<<endl;
            parent[n]=m;	
            count++;
            if(count==vertexNum-1)	break;
       }
   }
   return 0;
}
int Find(int *parent, int node)
{
	int f;
	f=node;
	while(parent[f]>-1)
		f=parent[f];
	return f;
}

Kruskal算法的时间复杂性分析:
边集数组排序,时间复杂性O(eloge)
在e条边中选边,时间复杂性为O(e)
因此时间复杂性为O(eloge)

6.5 最短路径

非网图中,最短路径是指两顶点之间经历的边数最少的路径。
网图中,最短路径是指两顶点之间经历的边上权值之和最短的路径。

单源点到其他顶点的最短路径
Dijkstra方法,O(n2)
任意一对顶点之间的最短路径
Floyd方法,O(n3)

  • 单源点最短路径问题

问题描述:给定带权有向图G=(V, E)和源点v∈V,求从v到G中其余各顶点的最短路径。
迪杰斯特拉(Dijkstra)提出了一个按路径长度递增的次序产生最短路径的算法——Dijkstra算法。

路径长度递增的理解:
含有n个顶点的图
计算图中顶点v到其他顶点(n-1个)的最短路
总共要找多少条最短路?
n-1条
按路径长度递增指的是这n-1条路的计算原则即,
先找第一条最短路(v,vi),所有n-1条路中最短的路
再找第二条最短路(v,vj

基本思想:
1、设置一个集合S存放已经找到最短路径的顶点,S的初始状态只包含源点v,
2、对vi∈V-S,假设从源点v到vi的有向边为最短路径(从v到其余顶点的最短路径的初值)。
3、以后每求得一条最短路径v, …, vk,就将vk加入集合S中,并将路径v, …, vk , vi与原来的假设相比较,取路径长度较小者为最短路径。
重复上述过程,直到集合V中全部顶点加入到集合S中。

路径长度最短的最短路径(即第一条最短路)的特点:
在这条路径上,必定只含一条边,并且这条边上的权值最小。
下一条路径长度次短的最短路径的特点:
它只可能有两种情况:
或者是直接从源点到该点(只含一条边);
或者是从源点经过顶点v1(第一条最短路径所依附的顶点),再到达该顶点(由两条边组成)。
再下一条路径长度次短的最短路径的特点:
它可能有四种情况:或者是直接从源点到该点(只含一条边); 或者从源点经过顶点v1,再到达该顶点(由两条边组成);或者是从源点经过顶点v2,再到达该顶点(两条条边);或者是从源点经过顶点v1、v2,再到达该顶点(多条边)。
其余最短路径的特点:
它或者是直接从源点到该点(只含一条边); 或者是从源点经过已求得最短路径的顶点(集合S中的顶点),再到达该顶点。

数据结构 :
图的存储结构:邻接矩阵存储结构
数组dist[n]:每个分量dist[i]表示当前所找到的从始点v到终点vi的最短路径的长度。初态为:若从v到vi有弧,则dist[i]为弧上权值;否则置dist[i]为∞。
数组path[n]:path[i]是一个字符串,表示当前所找到的从始点v到终点vi的最短路径。初态为:若从v到vi有弧,则path[i]为vvi;否则置path[i]空串。
数组s[n]:存放源点和已经找到最短路径的终点,其初态为只有一个源点v。

迪杰斯特拉算法的主要步骤如下:
(1) g为用邻接矩阵表示的带权图。
S←{v0} , dist[i]= g.arcs[v0][vi],path[i]=“v0vi”或“”;
将v0到其余顶点的路径长度初始化为权值;
(2) 选择vk,使得dist[vk]=min(dist[i] | vi∈V-S)
vk为目前求得的下一条从v0出发的最短路径的终点。
将vk加入到S中
(3) 修改从v0出发到集合V-S上任一顶点vi的最短路径的长度。如果
dist[k]+ g.arcs[k][i]<dist[i];则将dist[i]修改为dist[k]+ g.arcs[k][i];path[i]=path[k]+”vi”;
(4) 重复(2)、(3) n-1次,即可按最短路径长度的递增顺序,逐个求出v0到图中其它每个顶点的最短路径。

const int MAX=1000;
void  Dijkstra(MGraph g, int v){
       for ( i =0; i<g.vexnum ; i++){
	 dist[i]=g.arcs[v][i];  
               if ( dist[i]!= MAX) 
                      path [i]=g.vertex[v]+g.vertex[i];
               else
                      path[i]=“”;
       }
       S[0]=g.vertex[v]; 
       num=1;  
While (num<g.vextexNum){
    k=0;
    for(i=0;i<G.vertexNum;i++)
           if((dist[i]<dist[k])   k=i
    cout<<dist[k]<<path[k];
    s[num++]=G.vertex[k];                
    for(i=0;i<G.vertexNum;i++)
             if(dist[k]+g.arc[k][i]<dist[i] {
		 dist[i]=dist[k]+g.arc[k][i];
                       path[i]=path[k]+g.vertex[i];
               }
}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 每一对顶点之间的最短路径

问题描述:给定带权有向图G=(V, E),对任意顶点vi,vj∈V(i≠j),求顶点vi到顶点vj的最短路径。

解决办法1:每次以一个顶点为源点,调用Dijkstra算法n次。显然,时间复杂度为O(n3)。
解决办法2:弗洛伊德提出的求每一对顶点之间的最短路径算法——Floyd算法,其时间复杂度也是O(n3),但形式上要简单些。

Floyd算法的基本思想:

设图g用邻接矩阵法表示,
求图g中任意一对顶点vi、 vj间的最短路径。
(-1) 将vi到vj 的最短的路径长度初始化为(vi,vj), 然后进行如下n次比较和修正:
(0) 在vi、vj间加入顶点v0,比较(vi, v0, vj)和(vi, vj)的路径的长度,取其中较短的路径作为vi到vj的且中间顶点号不大于0的最短路径。
(1) 在vi、vj间加入顶点v1,得(vi, …,v1)和(v1, …,vj),其中:(vi, …, v1)是vi到v1 的且中间顶点号不大于0的最短路径,(v1, …, vj) 是v1到vj 的且中间顶点号不大于0的最短路径,这两条路径在上一步中已求出。
将(vi, …, v1, …, vj)与上一步已求出的且vi到vj 中间顶点号不大于0的最短路径比较,取其中较短的路径作为vi到vj 的且中间顶点号不大于1的最短路径。
(2)在vi、vj间加入顶点v2,得(vi, …, v2)和(v2, …, vj),其中:(vi, …, v2)是vi到v2 的且中间顶点号不大于1的最短路径,(v2, …, vj) 是v2到vj 的且中间顶点号不大于1的最短路径,这两条路径在上一步中已求出。
将(vi, …, v2, …, vj)与上一步已求出的且vi到vj 中间顶点号不大于1的最短路径比较, 取其中较短的路径作为vi到vj 的且中间顶点号不大于2的最短路径。
……

数据结构:
图的存储结构:带权的邻接矩阵存储结构
数组dist[n][n]:存放在迭代过程中求得的最短路径长度。迭代公式:
数据结构 第六章 图数组path[n][n]:放从vi到vj的最短路径,初始为path[i][j]=“vivj”。

void Floyd(MGraph G)
{
    for (i=0; i<G.vertexNum; i++)        
       for (j=0; j<G.vertexNum; j++)
       {
          dist[i][j]=G.arc[i][j];
          if (dist[i][j]!=) 
               path[i][j]=G.vertex[i]+G.vertex[j];
          else path[i][j]=""; 
       }
     for (k=0; k<G.vertexNum; k++)         
        for (i=0; i<G.vertexNum; i++)       
           for (j=0; j<G.vertexNum; j++)
               if (dist[i][k]+dist[k][j]<dist[i][j]) {
                    dist[i][j]=dist[i][k]+dist[k][j];
                    path[i][j]=path[i][k]+path[k][j];
              }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

6.6 有向无环图及其应用

AOV

AOV网:在一个表示工程的有向图中,用顶点表示活动,用弧表示活动之间的优先关系,称这样的有向图为顶点表示活动的网,简称AOV网。

AOV网特点:
1.AOV网中的弧表示活动之间存在的某种制约关系。
2.AOV网中不能出现回路 。

拓扑序列:
设G=(V,E)是一个具有n个顶点的有向图,V中的顶点序列v1, v2, …, vn称为一个拓扑序列,当且仅当满足下列条件:若从顶点vi到vj有一条路径,则在顶点的拓扑序列中顶点vi必在顶点vj之前。
拓扑排序:对一个有向图构造拓扑序列的过程称为拓扑排序 。

拓扑序列使得AOV网中所有应存在的前驱和后继关系都能得到满足。

基本思想:
⑴ 从AOV网中选择一个没有前驱的顶点并且输出;
⑵ 从AOV网中删去该顶点,并且删去所有以该顶点为尾的弧;
⑶ 重复上述两步,直到全部顶点都被输出,或AOV网中不存在没有前驱的顶点。

AOE

AOE网是一个带权的有向无环图。其中用顶点表示事件,弧表示活动,权值表示两个活动持续的时间。AOE网是以边表示活动的网。
  AOV网描述了活动之间的优先关系,可以认为是一个定性的研究,但是有时还需要定量地研究工程的进度,如整个工程的最短完成时间、各个子工程影响整个工程的程度、每个子工程的最短完成时间和最长完成时间。在AOE网中,通过研究事件和活动之间的关系,可以确定整个工程的最短完成时间,明确活动之间的相互影响,确保整个工程的顺利进行。
  在用AOE网表示一个工程计划时,用顶点表示各个事件,弧表示子工程的活动,权值表示子工程的活动需要的时间。在顶点表示事件发生之后,从该顶点出发的有向弧所表示的活动才能开始。在进入某个顶点的有向弧所表示的活动完成之后,该顶点表示的事件才能发生。
  对一个工程来说,只有一个开始状态和一个结束状态。因此在AOE网中,只有一个入度为零的点表示工程的开始,称为源点;只有一个出度为零的点表示工程的结束,称为汇点。

上一篇:

下一篇: